Seyed Vahid Moravvej, S. J. Mousavirad, D. Oliva, G. Schaefer, Zahra Sobhaninia
{"title":"An Improved DE Algorithm to Optimise the Learning Process of a BERT-based Plagiarism Detection Model","authors":"Seyed Vahid Moravvej, S. J. Mousavirad, D. Oliva, G. Schaefer, Zahra Sobhaninia","doi":"10.1109/CEC55065.2022.9870280","DOIUrl":null,"url":null,"abstract":"Plagiarism detection is a challenging task, aiming to identify similar items in two documents. In this paper, we present a novel approach to automatic plagiarism detection that combines BERT (bidirectional encoder representations from transformers) word embedding, attention mechanism-based long short-term memory (LSTM) networks, and an improved differential evolution (DE) algorithm for weight initialisation. BERT is used to pretrain deep bidirectional representations in all layers, while the pre-trained BERT model can be fine-tuned with only one extra output layer without significant changes in architecture. Deep learning algorithms often use the random weighting method for initialisation, followed by gradient-based optimisation algorithms such as back-propagation for training, making them susceptible to getting trapped in local optima. To address this, population- based metaheuristic algorithms such as DE can be used. We propose an improved DE algorithm with a clustering-based mutation operator, where first a winning cluster of candidate solutions is identified and a new updating strategy is then applied to include new candidate solutions in the current population. The proposed DE algorithm is used in LSTM, attention mechanism, and feed- forward neural networks to yield the initial seeds for subsequent gradient-based optimisation. We compare our proposed model with conventional and population-based approaches on three datasets (SNLI, MSRP and SemEval2014) and demonstrate it to give superior plagiarism detection performance.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Plagiarism detection is a challenging task, aiming to identify similar items in two documents. In this paper, we present a novel approach to automatic plagiarism detection that combines BERT (bidirectional encoder representations from transformers) word embedding, attention mechanism-based long short-term memory (LSTM) networks, and an improved differential evolution (DE) algorithm for weight initialisation. BERT is used to pretrain deep bidirectional representations in all layers, while the pre-trained BERT model can be fine-tuned with only one extra output layer without significant changes in architecture. Deep learning algorithms often use the random weighting method for initialisation, followed by gradient-based optimisation algorithms such as back-propagation for training, making them susceptible to getting trapped in local optima. To address this, population- based metaheuristic algorithms such as DE can be used. We propose an improved DE algorithm with a clustering-based mutation operator, where first a winning cluster of candidate solutions is identified and a new updating strategy is then applied to include new candidate solutions in the current population. The proposed DE algorithm is used in LSTM, attention mechanism, and feed- forward neural networks to yield the initial seeds for subsequent gradient-based optimisation. We compare our proposed model with conventional and population-based approaches on three datasets (SNLI, MSRP and SemEval2014) and demonstrate it to give superior plagiarism detection performance.