An attitude estimate method for fixed-wing UAV s using MEMS/GPS data fusion

Hui Tang, Zuo-jun Shen
{"title":"An attitude estimate method for fixed-wing UAV s using MEMS/GPS data fusion","authors":"Hui Tang, Zuo-jun Shen","doi":"10.1109/EIIS.2017.8298772","DOIUrl":null,"url":null,"abstract":"Unmanned Aerial Vehicles(UAVs) require high performance Attitude and Heading Reference System(AHRS) in automatic flight. This paper presents an attitude estimate method using Micro Electro Mechanical Systems(MEMS) and GPS data fusions. An Extended Kalman Filter(EKF) is developed in the algorithm. The measurements of MEMS Inertial Measuring Units(IMUs) and GPS receiver are modeled. The observation equations of EKF are simplified by the augmentation of GPS-derived accelerations and accelerometer measurements, which can reduce computational overhead. Simulation tests show the effectiveness of the proposed attitude estimate method.","PeriodicalId":434246,"journal":{"name":"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)","volume":"2672 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIIS.2017.8298772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Unmanned Aerial Vehicles(UAVs) require high performance Attitude and Heading Reference System(AHRS) in automatic flight. This paper presents an attitude estimate method using Micro Electro Mechanical Systems(MEMS) and GPS data fusions. An Extended Kalman Filter(EKF) is developed in the algorithm. The measurements of MEMS Inertial Measuring Units(IMUs) and GPS receiver are modeled. The observation equations of EKF are simplified by the augmentation of GPS-derived accelerations and accelerometer measurements, which can reduce computational overhead. Simulation tests show the effectiveness of the proposed attitude estimate method.
基于MEMS/GPS数据融合的固定翼无人机姿态估计方法
无人机在自动飞行中需要高性能的姿态和航向参考系统(AHRS)。提出了一种利用微机电系统(MEMS)和GPS数据融合的姿态估计方法。该算法提出了一种扩展卡尔曼滤波器(EKF)。对MEMS惯性测量单元(imu)和GPS接收机的测量进行了建模。通过增加gps导出的加速度和加速度计的测量值,简化了EKF的观测方程,减少了计算量。仿真试验表明了所提姿态估计方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信