Fire Tracking in Video Sequences Using Geometric Active Contours Controlled by Artificial Neural Network

A. Mouelhi, M. Bouchouicha, M. Sayadi, E. Moreau
{"title":"Fire Tracking in Video Sequences Using Geometric Active Contours Controlled by Artificial Neural Network","authors":"A. Mouelhi, M. Bouchouicha, M. Sayadi, E. Moreau","doi":"10.1109/IC_ASET49463.2020.9318289","DOIUrl":null,"url":null,"abstract":"Automatic fire and smoke detection is an important task to discover forest wildfires earlier. Tracking of smoke and fire in video sequences can provide helpful regional measures to evaluate precisely damages caused by fires. In security and surveillance applications, real-time video segmentation of both fire and smoke regions represents a crucial operation to avoid disaster. In this work, we propose a robust tracking method for fire regions using an artificial neural network (ANN) based approach combined with a hybrid geometric active contour (GAC) model based on Bayes error energy functional for forest wildfire videos. Firstly, an estimation function is built with local and global information collected from three color spaces (RGB, HIS and YCbCr) using Fisher's Linear Discriminant analysis (FLDA) and a trained ANN in order to get a preliminary fire pixel classification in each frame. This function is used to compute initial curves and the level set evolution parameters to control the active contour model providing a refined fire segmentation in each processed frame. The experimental results of the proposed tracking scheme proves its precision and robustness when tested on different varieties of scenarios whether wildfire-smoke video or outdoor fire sequences.","PeriodicalId":250315,"journal":{"name":"2020 4th International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC_ASET49463.2020.9318289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Automatic fire and smoke detection is an important task to discover forest wildfires earlier. Tracking of smoke and fire in video sequences can provide helpful regional measures to evaluate precisely damages caused by fires. In security and surveillance applications, real-time video segmentation of both fire and smoke regions represents a crucial operation to avoid disaster. In this work, we propose a robust tracking method for fire regions using an artificial neural network (ANN) based approach combined with a hybrid geometric active contour (GAC) model based on Bayes error energy functional for forest wildfire videos. Firstly, an estimation function is built with local and global information collected from three color spaces (RGB, HIS and YCbCr) using Fisher's Linear Discriminant analysis (FLDA) and a trained ANN in order to get a preliminary fire pixel classification in each frame. This function is used to compute initial curves and the level set evolution parameters to control the active contour model providing a refined fire segmentation in each processed frame. The experimental results of the proposed tracking scheme proves its precision and robustness when tested on different varieties of scenarios whether wildfire-smoke video or outdoor fire sequences.
基于人工神经网络控制的几何活动轮廓的视频序列火灾跟踪
火灾与烟雾自动探测是早期发现森林火灾的重要任务。在视频序列中跟踪烟雾和火灾可以为精确评估火灾造成的损失提供有用的区域措施。在安全和监控应用中,火灾和烟雾区域的实时视频分割是避免灾难的关键操作。在这项工作中,我们提出了一种基于人工神经网络(ANN)的方法结合基于贝叶斯误差能量函数的混合几何活动轮廓(GAC)模型的森林野火视频鲁棒跟踪方法。首先,利用Fisher线性判别分析(FLDA)和训练好的人工神经网络,从三个颜色空间(RGB、HIS和YCbCr)中收集局部和全局信息,构建估计函数,对每帧图像进行5个像素的初步分类;该函数用于计算初始曲线和水平集演化参数来控制活动轮廓模型,并在每个处理帧中提供精细的火焰分割。实验结果证明了该跟踪方案在不同场景下的准确性和鲁棒性,无论是野火-烟雾视频还是室外火灾序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信