A detection model for anomalies in smart grid with sensor network

S. Kher, V. Nutt, D. Dasgupta, H. Ali, P. Mixon
{"title":"A detection model for anomalies in smart grid with sensor network","authors":"S. Kher, V. Nutt, D. Dasgupta, H. Ali, P. Mixon","doi":"10.1109/FIIW.2012.6378345","DOIUrl":null,"url":null,"abstract":"In this paper, we present a model to monitor the smart grid for any anomalous/malicious activity or attack. The model uses machine learning techniques to detect and classify anomalies from the sensory observations. It is helpful for ensuring the security and stability of the smart grid. The model relies on the real time data collected using wireless sensor networks as an overlay network on the power distribution grid. The overlay network of wireless sensors /devices uses a cluster topology at each tower to collect local information about the tower that is augmented by the linear chain topology to connect to the base station (usually at the substation). Preliminary results show that our classification mechanism is promising and is able to detect anomalous events that may cause a threat to the smart grid.","PeriodicalId":170653,"journal":{"name":"2012 Future of Instrumentation International Workshop (FIIW) Proceedings","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Future of Instrumentation International Workshop (FIIW) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIIW.2012.6378345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper, we present a model to monitor the smart grid for any anomalous/malicious activity or attack. The model uses machine learning techniques to detect and classify anomalies from the sensory observations. It is helpful for ensuring the security and stability of the smart grid. The model relies on the real time data collected using wireless sensor networks as an overlay network on the power distribution grid. The overlay network of wireless sensors /devices uses a cluster topology at each tower to collect local information about the tower that is augmented by the linear chain topology to connect to the base station (usually at the substation). Preliminary results show that our classification mechanism is promising and is able to detect anomalous events that may cause a threat to the smart grid.
基于传感器网络的智能电网异常检测模型
在本文中,我们提出了一个模型来监控智能电网的任何异常/恶意活动或攻击。该模型使用机器学习技术从感官观察中检测和分类异常。这有助于确保智能电网的安全稳定。该模型依赖于无线传感器网络在配电网上作为覆盖网络收集的实时数据。无线传感器/设备的覆盖网络在每个塔上使用集群拓扑来收集有关塔的本地信息,这些信息通过线性链拓扑来增强,以连接到基站(通常在变电站)。初步结果表明,我们的分类机制是有前途的,能够检测到可能对智能电网造成威胁的异常事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信