Density estimation for MR image elastic matching

A. Machado, James C. Gee, Mario F. M. Campos
{"title":"Density estimation for MR image elastic matching","authors":"A. Machado, James C. Gee, Mario F. M. Campos","doi":"10.1109/SIBGRA.1998.722766","DOIUrl":null,"url":null,"abstract":"The problem of matching two images can be posed as finding a displacement field which assigns each point of the reference image to a point in the test image. In this paper we present an iterative algorithm to estimate the probability density function relating the intensity distribution of two MR scanners, based on the topological constraints embedded in the elastic matching model. The set of images used as input for the algorithm is the Harvard Atlas. The density estimation resulting from this method is compared with two other algorithms which do not assume any prior information about the media being imaged. The results show that the density estimation obtained with the elastic matching approach produce more realistic deformed images and is suitable to represent MR sensor models.","PeriodicalId":282177,"journal":{"name":"Proceedings SIBGRAPI'98. International Symposium on Computer Graphics, Image Processing, and Vision (Cat. No.98EX237)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings SIBGRAPI'98. International Symposium on Computer Graphics, Image Processing, and Vision (Cat. No.98EX237)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRA.1998.722766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The problem of matching two images can be posed as finding a displacement field which assigns each point of the reference image to a point in the test image. In this paper we present an iterative algorithm to estimate the probability density function relating the intensity distribution of two MR scanners, based on the topological constraints embedded in the elastic matching model. The set of images used as input for the algorithm is the Harvard Atlas. The density estimation resulting from this method is compared with two other algorithms which do not assume any prior information about the media being imaged. The results show that the density estimation obtained with the elastic matching approach produce more realistic deformed images and is suitable to represent MR sensor models.
磁共振图像弹性匹配的密度估计
两幅图像的匹配问题可以归结为寻找一个位移场,该位移场将参考图像的每个点分配给测试图像中的一个点。在本文中,我们提出了一种迭代算法来估计与两个磁共振扫描仪强度分布有关的概率密度函数,该算法基于嵌入在弹性匹配模型中的拓扑约束。作为算法输入的一组图像是哈佛地图集。将该方法得到的密度估计与另外两种不假设被成像介质的任何先验信息的算法进行了比较。结果表明,用弹性匹配方法得到的密度估计能得到更真实的形变图像,适合于表示MR传感器模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信