Generative adversarial networks for generating RGB-D videos

Yuki Nakahira, K. Kawamoto
{"title":"Generative adversarial networks for generating RGB-D videos","authors":"Yuki Nakahira, K. Kawamoto","doi":"10.23919/APSIPA.2018.8659648","DOIUrl":null,"url":null,"abstract":"Generative adversarial networks(GANs) have been successfully applied for generating high quality natural images and have been extended to the generation of RGB videos and 3D volume data. In this paper we consider the task of generating RGB-D videos, which is less extensively studied and still challenging. We explore deep GAN architectures suitable for the task, and develop 4 GAN architectures based on existing video-based GANs. With a facial expression database, we experimentally find that an extended version of the motion and content decomposed GANs, known as MoCoGAN, provides the highest quality RGB-D videos. We discuss several applications of our GAN to content creation and data augmentation, and also discuss its potential applications in behavioral experiments.","PeriodicalId":287799,"journal":{"name":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"14 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPA.2018.8659648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generative adversarial networks(GANs) have been successfully applied for generating high quality natural images and have been extended to the generation of RGB videos and 3D volume data. In this paper we consider the task of generating RGB-D videos, which is less extensively studied and still challenging. We explore deep GAN architectures suitable for the task, and develop 4 GAN architectures based on existing video-based GANs. With a facial expression database, we experimentally find that an extended version of the motion and content decomposed GANs, known as MoCoGAN, provides the highest quality RGB-D videos. We discuss several applications of our GAN to content creation and data augmentation, and also discuss its potential applications in behavioral experiments.
用于生成RGB-D视频的生成对抗网络
生成对抗网络(GANs)已经成功地应用于生成高质量的自然图像,并已扩展到生成RGB视频和3D体数据。在本文中,我们考虑了生成RGB-D视频的任务,这是一个研究较少且仍然具有挑战性的任务。我们探索了适合该任务的深度GAN架构,并基于现有的基于视频的GAN开发了4种GAN架构。通过面部表情数据库,我们实验发现,运动和内容分解gan的扩展版本(称为MoCoGAN)可以提供最高质量的RGB-D视频。我们讨论了GAN在内容创建和数据增强方面的几种应用,并讨论了其在行为实验中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信