Proposal of Crack Propagation Criterion Considered Constraint Effect under Extremely Low Cycle Fatigue; Evaluation by 1T-CT and 2T-CT Specimen

Y. Kishi, Y. Wada
{"title":"Proposal of Crack Propagation Criterion Considered Constraint Effect under Extremely Low Cycle Fatigue; Evaluation by 1T-CT and 2T-CT Specimen","authors":"Y. Kishi, Y. Wada","doi":"10.23967/wccm-apcom.2022.096","DOIUrl":null,"url":null,"abstract":". The strength evaluation of structures that requires high reliability, such as power generation facilities, is extremely important. It is necessary to ensure safety under extremely low cycle fatigue caused by earthquakes. However, a highly reliable evaluation method has not yet been developed because of variable fracture toughness due to the constraint effect with large deformation. The crack propagation criterion proposed by the previous study has needed some modification for accurate prediction. In this study, we confirmed whether the crack propagation criterion proposed by previous study can reproduce the fracture behavior of the experiment. Among then, relationship between the number of cycle and crack length, hysteresis loop, reproduction of crack shape were evaluation items.","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"362 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/wccm-apcom.2022.096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. The strength evaluation of structures that requires high reliability, such as power generation facilities, is extremely important. It is necessary to ensure safety under extremely low cycle fatigue caused by earthquakes. However, a highly reliable evaluation method has not yet been developed because of variable fracture toughness due to the constraint effect with large deformation. The crack propagation criterion proposed by the previous study has needed some modification for accurate prediction. In this study, we confirmed whether the crack propagation criterion proposed by previous study can reproduce the fracture behavior of the experiment. Among then, relationship between the number of cycle and crack length, hysteresis loop, reproduction of crack shape were evaluation items.
极低周疲劳下考虑约束效应的裂纹扩展准则的提出1T-CT和2T-CT标本评估
. 对于发电设施等对可靠性要求较高的结构,强度评估尤为重要。在地震引起的极低周疲劳下保证安全是必要的。然而,由于大变形条件下的约束效应导致断裂韧性变化,目前还没有一种可靠的评价方法。为了准确预测,前人提出的裂纹扩展准则需要进行一些修正。在本研究中,我们验证了前人提出的裂纹扩展准则是否能够再现实验中的断裂行为。其中,循环次数与裂纹长度的关系、迟滞回线、裂纹形状的再现为评价项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信