Distribution-based Particle Data Reduction for In-situ Analysis and Visualization of Large-scale N-body Cosmological Simulations

Guan Li, Jiayi Xu, Tianchi Zhang, Guihua Shan, Han-Wei Shen, Ko-Chih Wang, Shihong Liao, Zhonghua Lu
{"title":"Distribution-based Particle Data Reduction for In-situ Analysis and Visualization of Large-scale N-body Cosmological Simulations","authors":"Guan Li, Jiayi Xu, Tianchi Zhang, Guihua Shan, Han-Wei Shen, Ko-Chih Wang, Shihong Liao, Zhonghua Lu","doi":"10.1109/PacificVis48177.2020.1186","DOIUrl":null,"url":null,"abstract":"Cosmological N-body simulation is an important tool for scientists to study the evolution of the universe. With the increase of computing power, billions of particles of high space-time fidelity can be simulated by supercomputers. However, limited computer storage can only hold a small subset of the simulation output for analysis, which makes the understanding of the underlying cosmological phenomena difficult. To alleviate the problem, we design an in-situ data reduction method for large-scale unstructured particle data. During the data generation phase, we use a combined k-dimensional partitioning and Gaussian mixture model approach to reduce the data by utilizing probability distributions. We offer a model evaluation criterion to examine the quality of the probabilistic distribution models, which allows us to identify and improve low-quality models. After the in-situ processing, the particle data size is greatly reduced, which satisfies the requirements from the domain experts. By comparing the astronomical attributes and visualizations of the reconstructed data with the raw data, we demonstrate the effectiveness of our in-situ particle data reduction technique.","PeriodicalId":322092,"journal":{"name":"2020 IEEE Pacific Visualization Symposium (PacificVis)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis48177.2020.1186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Cosmological N-body simulation is an important tool for scientists to study the evolution of the universe. With the increase of computing power, billions of particles of high space-time fidelity can be simulated by supercomputers. However, limited computer storage can only hold a small subset of the simulation output for analysis, which makes the understanding of the underlying cosmological phenomena difficult. To alleviate the problem, we design an in-situ data reduction method for large-scale unstructured particle data. During the data generation phase, we use a combined k-dimensional partitioning and Gaussian mixture model approach to reduce the data by utilizing probability distributions. We offer a model evaluation criterion to examine the quality of the probabilistic distribution models, which allows us to identify and improve low-quality models. After the in-situ processing, the particle data size is greatly reduced, which satisfies the requirements from the domain experts. By comparing the astronomical attributes and visualizations of the reconstructed data with the raw data, we demonstrate the effectiveness of our in-situ particle data reduction technique.
基于分布的粒子数据约简用于大规模n体宇宙学模拟的原位分析和可视化
宇宙学n体模拟是科学家研究宇宙演化的重要工具。随着计算能力的提高,超级计算机可以模拟数十亿个具有高时空保真度的粒子。然而,有限的计算机存储只能容纳模拟输出的一小部分用于分析,这使得对潜在宇宙现象的理解变得困难。为了解决这个问题,我们设计了一种大规模非结构化粒子数据的原位数据约简方法。在数据生成阶段,我们使用k维划分和高斯混合模型相结合的方法,利用概率分布来减少数据。我们提供了一个模型评价标准来检查概率分布模型的质量,这使我们能够识别和改进低质量的模型。经过原位处理后,颗粒数据尺寸大大减小,满足了领域专家的要求。通过将重建数据与原始数据的天文属性和可视化效果进行比较,验证了原位粒子数据约简技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信