Mode Collapse in Generative Adversarial Networks: An Overview

Youssef Kossale, Mohammed Airaj, Aziz Darouichi
{"title":"Mode Collapse in Generative Adversarial Networks: An Overview","authors":"Youssef Kossale, Mohammed Airaj, Aziz Darouichi","doi":"10.1109/ICOA55659.2022.9934291","DOIUrl":null,"url":null,"abstract":"With the rise of a new framework known as Generative Adversarial Networks (GANs), generative models have gained considerable amount of attention in the area of unsupervised learning. GANs have been thoroughly studied since their emergence in 2014, leading to an enormous amount of new models and applications built on this said framework. Although despite their success, GANs suffer from some notorious problems during training, hindering further advances in the field. This paper seeks to highlight one of the most encountered problems in GAN training, namely the “Helvetica scenario” as stated by its authors or “mode collapse” as widely known. We will try to provide an overview of this said challenge, what is it, why it occurs, and some suggested workarounds to reduce its impact on training.","PeriodicalId":345017,"journal":{"name":"2022 8th International Conference on Optimization and Applications (ICOA)","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA55659.2022.9934291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

With the rise of a new framework known as Generative Adversarial Networks (GANs), generative models have gained considerable amount of attention in the area of unsupervised learning. GANs have been thoroughly studied since their emergence in 2014, leading to an enormous amount of new models and applications built on this said framework. Although despite their success, GANs suffer from some notorious problems during training, hindering further advances in the field. This paper seeks to highlight one of the most encountered problems in GAN training, namely the “Helvetica scenario” as stated by its authors or “mode collapse” as widely known. We will try to provide an overview of this said challenge, what is it, why it occurs, and some suggested workarounds to reduce its impact on training.
生成对抗网络中的模式崩溃:综述
随着生成对抗网络(GANs)新框架的兴起,生成模型在无监督学习领域获得了相当多的关注。自2014年gan出现以来,人们对其进行了深入的研究,并在此框架上建立了大量的新模型和应用。尽管取得了成功,但gan在训练中存在一些臭名昭著的问题,阻碍了该领域的进一步发展。本文旨在强调GAN训练中最常遇到的问题之一,即作者所说的“Helvetica场景”或众所周知的“模式崩溃”。我们将尝试对上述挑战进行概述,它是什么,为什么会发生,以及一些建议的解决方案,以减少其对培训的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信