Classification With Unimodular Matrices In Hybrid Models

Dominic Pasquali
{"title":"Classification With Unimodular Matrices In Hybrid Models","authors":"Dominic Pasquali","doi":"10.1109/SEC54971.2022.00063","DOIUrl":null,"url":null,"abstract":"Guessing the architecture of a variational quantum circuit can be fraught with error, since determining the correct locations and types of parameterized quantum gates is often an empirical task. This work demonstrates that using a general parameterized unimodular matrix achieves a higher classification accuracy faster than comparable classical models. Variations of this ansatz and the performance results are explored and discussed to analyze this approach.","PeriodicalId":364062,"journal":{"name":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC54971.2022.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Guessing the architecture of a variational quantum circuit can be fraught with error, since determining the correct locations and types of parameterized quantum gates is often an empirical task. This work demonstrates that using a general parameterized unimodular matrix achieves a higher classification accuracy faster than comparable classical models. Variations of this ansatz and the performance results are explored and discussed to analyze this approach.
混合模型中单模矩阵的分类
猜测变分量子电路的结构可能充满错误,因为确定参数化量子门的正确位置和类型通常是一项经验任务。这项工作表明,使用一般参数化单模矩阵可以比可比的经典模型更快地实现更高的分类精度。为了分析这种方法,我们探索和讨论了这种分析的变化和性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信