Research of Scattered Wave NMO Method Based on Adaptive Algorithm

IEEA '18 Pub Date : 2018-03-28 DOI:10.1145/3208854.3208858
Yangfan Huang, Qingchen Wu, Guoren Zhu, Yanyun Li, Lin Huang, Xiaosong Zhang, Youping Mao, Ping Gan
{"title":"Research of Scattered Wave NMO Method Based on Adaptive Algorithm","authors":"Yangfan Huang, Qingchen Wu, Guoren Zhu, Yanyun Li, Lin Huang, Xiaosong Zhang, Youping Mao, Ping Gan","doi":"10.1145/3208854.3208858","DOIUrl":null,"url":null,"abstract":"The shallow geological exploration is more and more widely applied. Scattered wave is a research method of geological exploration which is more close to the real seismic waves, and NMO is one of the key steps in seismic data processing. But conventional NMO method cannot completely give play to the advantages of the scattered wave. Conventional NMO prone to make seismic waves stretch distortion and destroy the original information of seismic wave data, and then, affects the accuracy of seismic data processing results. So this paper proposes a scattered wave NMO method based on adaptive algorithm. This paper analyzes the propagation characteristics of scattered waves, make full use of the adaptive time delay estimation which does not need the statistical properties of the signal and automatically adjust the system parameters to achieve the optimal characteristics, then obtain time delay information. This method able to take full advantage of the characteristics of scattered wave, effective decrease NMO stretching distortion, improve the resolution ratio of seismic data processing results, and effectively retain amplitude and phase information of seismic wave.","PeriodicalId":365707,"journal":{"name":"IEEA '18","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEA '18","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208854.3208858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The shallow geological exploration is more and more widely applied. Scattered wave is a research method of geological exploration which is more close to the real seismic waves, and NMO is one of the key steps in seismic data processing. But conventional NMO method cannot completely give play to the advantages of the scattered wave. Conventional NMO prone to make seismic waves stretch distortion and destroy the original information of seismic wave data, and then, affects the accuracy of seismic data processing results. So this paper proposes a scattered wave NMO method based on adaptive algorithm. This paper analyzes the propagation characteristics of scattered waves, make full use of the adaptive time delay estimation which does not need the statistical properties of the signal and automatically adjust the system parameters to achieve the optimal characteristics, then obtain time delay information. This method able to take full advantage of the characteristics of scattered wave, effective decrease NMO stretching distortion, improve the resolution ratio of seismic data processing results, and effectively retain amplitude and phase information of seismic wave.
基于自适应算法的散射波NMO方法研究
浅层地质勘查的应用越来越广泛。散射波是一种更接近真实地震波的地质勘探研究方法,NMO是地震资料处理的关键步骤之一。但传统的NMO方法不能完全发挥散射波的优势。传统的NMO容易使地震波拉伸变形,破坏地震波数据的原始信息,从而影响地震数据处理结果的准确性。为此,本文提出了一种基于自适应算法的散射波NMO方法。本文分析了散射波的传播特性,充分利用不需要信号统计特性的自适应时延估计,自动调整系统参数达到最优特性,从而获得时延信息。该方法能够充分利用散射波的特性,有效降低NMO拉伸畸变,提高地震资料处理结果的分辨率,有效保留地震波的振幅和相位信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信