The complexity of unique k-SAT: an isolation lemma for k-CNFs

Chris Calabro, R. Impagliazzo, Valentine Kabanets, R. Paturi
{"title":"The complexity of unique k-SAT: an isolation lemma for k-CNFs","authors":"Chris Calabro, R. Impagliazzo, Valentine Kabanets, R. Paturi","doi":"10.1109/CCC.2003.1214416","DOIUrl":null,"url":null,"abstract":"We provide some evidence that unique k-SAT is as hard to solve as general k-SAT, where k-SAT denotes the satisfiability problem for k-CNFs and unique k-SAT is the promise version where the given formula has 0 or 1 solutions. Namely, defining for each k/spl ges/1, s/sub k/=inf{/spl delta//spl ges/0|/spl exist/aO(2/sup /spl delta/n/)-time randomized algorithm for k-SAT} and, similarly, /spl sigma//sub k/=inf{/spl delta//spl ges/0|/spl exist/aO(2/sup /spl delta/n/)-time randomized algorithm for Unique k-SAT}, we show that lim/sub k/spl rarr//spl infin//s/sub k/=lim/sub k/spl rarr//spl infin///spl sigma//sub k/. As a corollary, we prove that, if Unique 3-SAT can be solved in time 2/sup /spl epsi/n/ for every /spl epsi/>0, then so can k-SAT for k/spl ges/3. Our main technical result is an isolation lemma for k-CNFs, which shows that a given satisfiable k-CNF can be efficiently probabilistically reduced to a uniquely satisfiable k-CNF, with nontrivial, albeit exponentially small, success probability.","PeriodicalId":286846,"journal":{"name":"18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings.","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2003.1214416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

Abstract

We provide some evidence that unique k-SAT is as hard to solve as general k-SAT, where k-SAT denotes the satisfiability problem for k-CNFs and unique k-SAT is the promise version where the given formula has 0 or 1 solutions. Namely, defining for each k/spl ges/1, s/sub k/=inf{/spl delta//spl ges/0|/spl exist/aO(2/sup /spl delta/n/)-time randomized algorithm for k-SAT} and, similarly, /spl sigma//sub k/=inf{/spl delta//spl ges/0|/spl exist/aO(2/sup /spl delta/n/)-time randomized algorithm for Unique k-SAT}, we show that lim/sub k/spl rarr//spl infin//s/sub k/=lim/sub k/spl rarr//spl infin///spl sigma//sub k/. As a corollary, we prove that, if Unique 3-SAT can be solved in time 2/sup /spl epsi/n/ for every /spl epsi/>0, then so can k-SAT for k/spl ges/3. Our main technical result is an isolation lemma for k-CNFs, which shows that a given satisfiable k-CNF can be efficiently probabilistically reduced to a uniquely satisfiable k-CNF, with nontrivial, albeit exponentially small, success probability.
唯一k-SAT的复杂性:k-CNFs的一个隔离引理
我们提供了一些证据,证明唯一k-SAT与一般k-SAT一样难以求解,其中k-SAT表示k-CNFs的可满足性问题,唯一k-SAT是给定公式有0或1个解的承诺版本。即,定义每个k/spl ges/1, s/sub k/=inf{/spl delta//spl ges/0|/spl exist/aO(2/sup /spl delta/n/)时间随机算法对于k- sat},类似地,/spl sigma//sub k/=inf{/spl delta//spl ges/0|/spl exist/aO(2/sup /spl delta/n/)时间随机算法对于唯一k- sat},我们证明lim/sub k/spl rarr//spl infin//s/sub k/=lim/sub k/spl rarr//spl infin// spl sigma//sub k/。作为推论,我们证明了如果对于每一个/spl epsi/>0,唯一的3- sat可以在2/sup /spl epsi/n/时间内解出,那么对于k/spl ges/3, k- sat也可以在2/sup /spl epsi/n/时间内解出。我们的主要技术成果是k-CNF的隔离引理,它表明给定的可满足k-CNF可以有效地概率化约为唯一可满足的k-CNF,具有非平凡的,尽管指数小的成功概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信