MUHSIC: An Open Dataset with Temporal Musical Success Information

Gabriel P. Oliveira, Gabriel R. G. Barbosa, Bruna C. Melo, Mariana O. Silva, Danilo B. Seufitelli, Mirella M. Moro
{"title":"MUHSIC: An Open Dataset with Temporal Musical Success Information","authors":"Gabriel P. Oliveira, Gabriel R. G. Barbosa, Bruna C. Melo, Mariana O. Silva, Danilo B. Seufitelli, Mirella M. Moro","doi":"10.5753/dsw.2021.17415","DOIUrl":null,"url":null,"abstract":"Music is an alive industry with an increasing volume of complex data that creates new challenges and opportunities for extracting knowledge, benefiting not only the different music segments but also the Music Information Retrieval (MIR) community. In this paper, we present MUHSIC, a novel dataset with enhanced information on musical success. We focus on artists and genres by combining chart-related data with acoustic metadata to describe the temporal evolution of musical careers. The enriched and curated data allow building success-based time series to investigate high-impact periods (hot streaks) in such careers, transforming complex data into knowledge. Overall, MUHSIC is a relevant tool in music-related tasks due to its easy use and replicability.","PeriodicalId":314975,"journal":{"name":"Anais do III Dataset Showcase Workshop (DSW 2021)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do III Dataset Showcase Workshop (DSW 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/dsw.2021.17415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Music is an alive industry with an increasing volume of complex data that creates new challenges and opportunities for extracting knowledge, benefiting not only the different music segments but also the Music Information Retrieval (MIR) community. In this paper, we present MUHSIC, a novel dataset with enhanced information on musical success. We focus on artists and genres by combining chart-related data with acoustic metadata to describe the temporal evolution of musical careers. The enriched and curated data allow building success-based time series to investigate high-impact periods (hot streaks) in such careers, transforming complex data into knowledge. Overall, MUHSIC is a relevant tool in music-related tasks due to its easy use and replicability.
MUHSIC:一个具有时间音乐成功信息的开放数据集
音乐是一个充满活力的行业,复杂的数据量不断增加,为提取知识创造了新的挑战和机遇,不仅使不同的音乐领域受益,而且使音乐信息检索(MIR)社区受益。在本文中,我们提出了MUHSIC,这是一个新的数据集,具有增强的音乐成功信息。我们通过将排行榜相关数据与声学元数据相结合来描述音乐职业的时间演变,从而关注艺术家和流派。丰富和整理的数据允许建立基于成功的时间序列,以调查这些职业中的高影响时期(热点),将复杂的数据转化为知识。总体而言,MUHSIC由于其易于使用和可复制性而成为与音乐相关的任务的相关工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信