An incomplete dominance genetic algorithm approach to microarray data analysis

N. T. Melita, S. Holban
{"title":"An incomplete dominance genetic algorithm approach to microarray data analysis","authors":"N. T. Melita, S. Holban","doi":"10.1109/ICCP.2016.7737137","DOIUrl":null,"url":null,"abstract":"We address the problem of analyzing the vast amount of data involved in microarray studies. The finality is to discover, from a large pool of candidates, a limited number of genes that could be causally related with a specific pathology. In this context, we propose a new genetic algorithm (GA) approach for feature selection, with diploid number of chromosomes and an incomplete dominance model for genotype to phenotype mapping. We test our algorithm on a familiar data set for performance evaluation purposes.","PeriodicalId":343658,"journal":{"name":"2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2016.7737137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We address the problem of analyzing the vast amount of data involved in microarray studies. The finality is to discover, from a large pool of candidates, a limited number of genes that could be causally related with a specific pathology. In this context, we propose a new genetic algorithm (GA) approach for feature selection, with diploid number of chromosomes and an incomplete dominance model for genotype to phenotype mapping. We test our algorithm on a familiar data set for performance evaluation purposes.
微阵列数据分析的不完全显性遗传算法
我们解决的问题是分析涉及微阵列研究的大量数据。最终的目标是从大量的候选基因中发现可能与特定病理有因果关系的有限数量的基因。在此背景下,我们提出了一种新的遗传算法(GA)方法进行特征选择,以二倍体染色体数和不完全显性模型进行基因型到表型定位。为了进行性能评估,我们在一个熟悉的数据集上测试我们的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信