Differential Compound Prioritization via Bi-Directional Selectivity Push with Power

Junfeng Liu, Xia Ning
{"title":"Differential Compound Prioritization via Bi-Directional Selectivity Push with Power","authors":"Junfeng Liu, Xia Ning","doi":"10.1145/3107411.3107486","DOIUrl":null,"url":null,"abstract":"Effective in silico compound prioritization is critical to identify promising candidates in the early stages of drug discovery. Current methods typically focus on compound ranking based on one single property, for example, activity, against a single target. However, compound selectivity is also a key property that should be deliberated simultaneously so as to reduce the likelihood of undesired side effects of future drugs. In this paper, we present a novel machine learning based differential compound prioritization method dCPPP. This dCPPP method learns compound prioritization models that rank active compounds well, and meanwhile, preferably rank selective compounds higher via a bi-directional push strategy. The bidirectional push is enhanced with push powers that are determined by ranking difference of selective compounds over multiple bioassays. Our experiments demonstrate that the dCPPP achieves an overall 19.221% improvement on prioritizing selective compounds over baseline models.","PeriodicalId":246388,"journal":{"name":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3107411.3107486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Effective in silico compound prioritization is critical to identify promising candidates in the early stages of drug discovery. Current methods typically focus on compound ranking based on one single property, for example, activity, against a single target. However, compound selectivity is also a key property that should be deliberated simultaneously so as to reduce the likelihood of undesired side effects of future drugs. In this paper, we present a novel machine learning based differential compound prioritization method dCPPP. This dCPPP method learns compound prioritization models that rank active compounds well, and meanwhile, preferably rank selective compounds higher via a bi-directional push strategy. The bidirectional push is enhanced with push powers that are determined by ranking difference of selective compounds over multiple bioassays. Our experiments demonstrate that the dCPPP achieves an overall 19.221% improvement on prioritizing selective compounds over baseline models.
基于功率的双向选择性推动的差分化合物优先排序
有效的硅化合物优先排序对于在药物发现的早期阶段确定有希望的候选药物至关重要。当前的方法通常侧重于针对单个目标基于单个属性(例如,activity)的复合排名。然而,化合物的选择性也是一个需要同时考虑的关键特性,以减少未来药物产生不良副作用的可能性。本文提出了一种基于机器学习的差分复合优先排序方法dCPPP。该方法学习的化合物优先排序模型对活性化合物进行了较好的排序,同时通过双向推送策略对选择性化合物进行了较好的排序。双向推动是通过在多种生物测定中选择化合物的排序差异来确定的。我们的实验表明,与基线模型相比,dCPPP在优先选择化合物方面实现了19.221%的总体改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信