A New Iterative Power Flow Method for AC Distribution Grids with Radial and Mesh Topologies

Sara Yulieth Bocanegra, W. Gil-González, O. Montoya
{"title":"A New Iterative Power Flow Method for AC Distribution Grids with Radial and Mesh Topologies","authors":"Sara Yulieth Bocanegra, W. Gil-González, O. Montoya","doi":"10.1109/ROPEC50909.2020.9258750","DOIUrl":null,"url":null,"abstract":"This brief discusses the classical problem of power flow analysis in alternating current (ac) distribution networks through Taylor series expansion. The main advantage of this approach is that it can work with radial and mesh configurations without modifications in its formulation. This method can deal with the hyperbolic relation between voltages and currents at $k$ node, i.e., $\\mathbb{I}_{k}=\\frac{\\mathbb{S}_{k}^{\\star}}{\\mathbb{V}_{k}^{\\star}}$, by transforming this into a linear approximation. To minimize the error in this linear transformation, an iterative procedure is implemented by updating the linearizing point, which allows reaching the same solution of the classical power flow methods for distribution systems in less processing time. Numerical results confirm the effectiveness of the proposed approach when compared to classical Gauss-Seidel, Newton-Raphson, and Backward/forward methods that can work with radial and mesh distribution network structures. All the numerical validations are conducted in MATLAB software.","PeriodicalId":177447,"journal":{"name":"2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC50909.2020.9258750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This brief discusses the classical problem of power flow analysis in alternating current (ac) distribution networks through Taylor series expansion. The main advantage of this approach is that it can work with radial and mesh configurations without modifications in its formulation. This method can deal with the hyperbolic relation between voltages and currents at $k$ node, i.e., $\mathbb{I}_{k}=\frac{\mathbb{S}_{k}^{\star}}{\mathbb{V}_{k}^{\star}}$, by transforming this into a linear approximation. To minimize the error in this linear transformation, an iterative procedure is implemented by updating the linearizing point, which allows reaching the same solution of the classical power flow methods for distribution systems in less processing time. Numerical results confirm the effectiveness of the proposed approach when compared to classical Gauss-Seidel, Newton-Raphson, and Backward/forward methods that can work with radial and mesh distribution network structures. All the numerical validations are conducted in MATLAB software.
基于径向和网格拓扑的交流配电网潮流迭代算法
本文简要讨论了用泰勒级数展开进行交流配电网潮流分析的经典问题。这种方法的主要优点是它可以与径向和网格配置一起工作,而无需修改其配方。该方法可以处理$k$节点电压和电流之间的双曲关系,即$\mathbb{I}_{k}=\frac{\mathbb{S}_{k}^{\星}}{\mathbb{V}_{k}^{\星}}$。为了使线性变换的误差最小,通过更新线性化点实现迭代过程,使得在较少的处理时间内得到与经典潮流方法相同的解。与传统的高斯-塞德尔、牛顿-拉夫森和后向/前向方法相比,数值结果证实了该方法的有效性,这些方法适用于径向和网状配电网结构。所有数值验证均在MATLAB软件中进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信