Exploring Artificial Intelligence methods for recognizing human activities in real time by exploiting inertial sensors

Dimitrios Boucharas, Christos Androutsos, N. Tachos, E. Tripoliti, Dimitrios Manousos, Vasileios Skaramagkas, Emmanouil Ktistakis, M. Tsiknakis, D. Fotiadis
{"title":"Exploring Artificial Intelligence methods for recognizing human activities in real time by exploiting inertial sensors","authors":"Dimitrios Boucharas, Christos Androutsos, N. Tachos, E. Tripoliti, Dimitrios Manousos, Vasileios Skaramagkas, Emmanouil Ktistakis, M. Tsiknakis, D. Fotiadis","doi":"10.1109/BIBE52308.2021.9635486","DOIUrl":null,"url":null,"abstract":"The aim of this work is to present two different algorithmic pipelines for human activity recognition (HAR) in real time, exploiting inertial measurement unit (IMU) sensors. Various learning classifiers have been developed and tested across different datasets. The experimental results provide a comparative performance analysis based on accuracy and latency during fine-tuning, training and prediction. The overall accuracy of the proposed pipeline reaches 66 % in the publicly available dataset and 90% in the in-house one.","PeriodicalId":343724,"journal":{"name":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE52308.2021.9635486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of this work is to present two different algorithmic pipelines for human activity recognition (HAR) in real time, exploiting inertial measurement unit (IMU) sensors. Various learning classifiers have been developed and tested across different datasets. The experimental results provide a comparative performance analysis based on accuracy and latency during fine-tuning, training and prediction. The overall accuracy of the proposed pipeline reaches 66 % in the publicly available dataset and 90% in the in-house one.
探索利用惯性传感器实时识别人类活动的人工智能方法
这项工作的目的是利用惯性测量单元(IMU)传感器,为实时人类活动识别(HAR)提供两种不同的算法管道。已经开发了各种学习分类器,并在不同的数据集上进行了测试。实验结果提供了在微调、训练和预测过程中基于准确性和延迟的性能对比分析。在公开可用的数据集中,拟议管道的总体精度达到66%,在内部数据集中达到90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信