Grau de internacionalização influencia a previsão da rentabilidade de ações? Evidências do mercado de ações brasileiro, por meio de redes neurais artificiais
Vitor Borges Tavares, C. Maestri, Antonio Sérgio Torres Penedo, V. Pereira
{"title":"Grau de internacionalização influencia a previsão da rentabilidade de ações? Evidências do mercado de ações brasileiro, por meio de redes neurais artificiais","authors":"Vitor Borges Tavares, C. Maestri, Antonio Sérgio Torres Penedo, V. Pereira","doi":"10.18316/DESENV.V8I1.4937","DOIUrl":null,"url":null,"abstract":"Prever a direção da variação de preços de ações é uma contribuição importante para o desenvolvimento de estratégias eficazes em operações do mercado financeiro. Especialmente no Brasil, cuja economia vem se expandindo desde meados da década de 1990 após a estabilização macroeconômica alcançada pelo Plano Real e de políticas para melhorar a inserção do país em mercados mundiais. Assim, o presente estudo teve como objetivo desenvolver modelos de redes neurais artificiais para prever a rentabilidade das ações das empresas brasileiras com maior e menor grau de internacionalização. Os modelos desenvolvidos para prever a rentabilidade das ações das empresas mais e menos internacionalizadas da BM&FBovespa no período de 2007 a 2012 apresentaram erro médio quadrático de 0.2422 e 0.0988, respectivamente. A ocorrência do maior erro quadrático no modelo de rede neural para previsão da rentabilidade das ações das empresas com alto grau de internacionalização pode estar associada à dependência das novas redes de negócios com exposição a diferentes riscos e também às diferenças entre os países estrangeiros, o que aumenta os riscos dos negócios internacionais. E, o menor erro quadrático no modelo de rede neural para previsão da rentabilidade das ações das empresas com baixo grau de internacionalização pode estar relacionado ao comprometimento gradual dos recursos e da estrutura organizacional, o que proporcionaria uma menor exposição ao risco, rentabilidade de ação mais estável e um modelo de previsão mais eficaz.","PeriodicalId":220422,"journal":{"name":"Desenvolve Revista de Gestão do Unilasalle","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desenvolve Revista de Gestão do Unilasalle","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18316/DESENV.V8I1.4937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Prever a direção da variação de preços de ações é uma contribuição importante para o desenvolvimento de estratégias eficazes em operações do mercado financeiro. Especialmente no Brasil, cuja economia vem se expandindo desde meados da década de 1990 após a estabilização macroeconômica alcançada pelo Plano Real e de políticas para melhorar a inserção do país em mercados mundiais. Assim, o presente estudo teve como objetivo desenvolver modelos de redes neurais artificiais para prever a rentabilidade das ações das empresas brasileiras com maior e menor grau de internacionalização. Os modelos desenvolvidos para prever a rentabilidade das ações das empresas mais e menos internacionalizadas da BM&FBovespa no período de 2007 a 2012 apresentaram erro médio quadrático de 0.2422 e 0.0988, respectivamente. A ocorrência do maior erro quadrático no modelo de rede neural para previsão da rentabilidade das ações das empresas com alto grau de internacionalização pode estar associada à dependência das novas redes de negócios com exposição a diferentes riscos e também às diferenças entre os países estrangeiros, o que aumenta os riscos dos negócios internacionais. E, o menor erro quadrático no modelo de rede neural para previsão da rentabilidade das ações das empresas com baixo grau de internacionalização pode estar relacionado ao comprometimento gradual dos recursos e da estrutura organizacional, o que proporcionaria uma menor exposição ao risco, rentabilidade de ação mais estável e um modelo de previsão mais eficaz.