Strategies in SIMD Computing for Complex Neural Bioinspired Applications

J. Madrenas, J. Moreno
{"title":"Strategies in SIMD Computing for Complex Neural Bioinspired Applications","authors":"J. Madrenas, J. Moreno","doi":"10.1109/AHS.2009.31","DOIUrl":null,"url":null,"abstract":"The scalable architecture of a multiprocessor intended to efficiently accelerate the emulation of large-scale complex systems, in particular massively-parallel bioinspired neural networks, is introduced in this paper. In order to cope with the required processing complexity of a target network size of large number of neurons and synapses, the SIMD configuration is adopted. Special flow-control instructions are proposed to support conditional execution. Also, a modified digital AER scheme allows for the compact emulation of interconnects. Due to its programmable characteristics, the architecture is flexible enough to support the emulation of different neural models and other homogeneous parallel applications.","PeriodicalId":318989,"journal":{"name":"2009 NASA/ESA Conference on Adaptive Hardware and Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 NASA/ESA Conference on Adaptive Hardware and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AHS.2009.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The scalable architecture of a multiprocessor intended to efficiently accelerate the emulation of large-scale complex systems, in particular massively-parallel bioinspired neural networks, is introduced in this paper. In order to cope with the required processing complexity of a target network size of large number of neurons and synapses, the SIMD configuration is adopted. Special flow-control instructions are proposed to support conditional execution. Also, a modified digital AER scheme allows for the compact emulation of interconnects. Due to its programmable characteristics, the architecture is flexible enough to support the emulation of different neural models and other homogeneous parallel applications.
复杂神经生物应用SIMD计算策略
本文介绍了一种可扩展的多处理器体系结构,旨在有效地加速大规模复杂系统的仿真,特别是大规模并行生物神经网络的仿真。为了应对具有大量神经元和突触的目标网络规模所要求的处理复杂度,采用了SIMD配置。提出了特殊的流控制指令来支持条件执行。此外,改进的数字AER方案允许对互连进行紧凑的仿真。由于其可编程特性,该架构足够灵活,可以支持不同神经模型和其他同构并行应用的仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信