Atil U. Ay, Erdinç Öztürk, F. Rodríguez-Henríquez, E. Savaş
{"title":"Design and implementation of a constant-time FPGA accelerator for fast elliptic curve cryptography","authors":"Atil U. Ay, Erdinç Öztürk, F. Rodríguez-Henríquez, E. Savaş","doi":"10.1109/ReConFig.2016.7857163","DOIUrl":null,"url":null,"abstract":"In this paper we present a scalar multiplication hardware architecture that computes a constant-time variable-base point multiplication over the Galbraith-Lin-Scott (GLS) family of binary elliptic curves. Our hardware design is especially tailored for the quadratic extension field F22n, with n = 127, which allows us to attain a security level close to 128 bits. We explore extensively the usage of digit-based and Karatsuba multipliers for performing the quadratic field arithmetic associated to GLS elliptic curves and report the area and time performance obtained by these two types of multipliers. Targeting a XILINX KINTEX-7 FPGA device, we report a hardware implementation of our design that achieves a delay of just 3.98μs for computing one scalar multiplication. This allows us to claim the current speed record for this operation at or around the 128-bit security level for any hardware or software realization reported in the literature.","PeriodicalId":431909,"journal":{"name":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReConFig.2016.7857163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper we present a scalar multiplication hardware architecture that computes a constant-time variable-base point multiplication over the Galbraith-Lin-Scott (GLS) family of binary elliptic curves. Our hardware design is especially tailored for the quadratic extension field F22n, with n = 127, which allows us to attain a security level close to 128 bits. We explore extensively the usage of digit-based and Karatsuba multipliers for performing the quadratic field arithmetic associated to GLS elliptic curves and report the area and time performance obtained by these two types of multipliers. Targeting a XILINX KINTEX-7 FPGA device, we report a hardware implementation of our design that achieves a delay of just 3.98μs for computing one scalar multiplication. This allows us to claim the current speed record for this operation at or around the 128-bit security level for any hardware or software realization reported in the literature.