2. Making surfaces

Richard A. Earl
{"title":"2. Making surfaces","authors":"Richard A. Earl","doi":"10.1093/actrade/9780198832683.003.0002","DOIUrl":null,"url":null,"abstract":"‘Making surfaces’ considers the shape of surfaces and discusses the work of some of the early topologists, Möbius, Klein, and Riemann. It introduces the torus shape and shows how its Euler number can be calculated along with that of a sphere. It discusses closed surfaces—ones without a boundary—and how they can be divided up into vertices, edges, and faces. It then introduces one-sided surfaces such as the Möbius strip and Klein bottle, which are examples of non-orientable surfaces. The Euler number goes a long way to separating out different surfaces, with the only missing ingredient in the classification the notion of orientability.","PeriodicalId":169406,"journal":{"name":"Topology: A Very Short Introduction","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology: A Very Short Introduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/actrade/9780198832683.003.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

‘Making surfaces’ considers the shape of surfaces and discusses the work of some of the early topologists, Möbius, Klein, and Riemann. It introduces the torus shape and shows how its Euler number can be calculated along with that of a sphere. It discusses closed surfaces—ones without a boundary—and how they can be divided up into vertices, edges, and faces. It then introduces one-sided surfaces such as the Möbius strip and Klein bottle, which are examples of non-orientable surfaces. The Euler number goes a long way to separating out different surfaces, with the only missing ingredient in the classification the notion of orientability.
2. 使表面
“制造表面”考虑了表面的形状,并讨论了一些早期拓扑学家的工作,Möbius, Klein和Riemann。它介绍了环面形状,并说明了如何计算它的欧拉数与球体的欧拉数。它讨论了封闭曲面——没有边界的曲面——以及如何将它们划分为顶点、边和面。然后介绍了片面的表面,如Möbius条和克莱因瓶,这是不可定向表面的例子。欧拉数在区分不同表面上走了很长一段路,在分类中唯一缺少的成分是可定向性的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信