I. C. Garcia, Iryna Kulchytska-Ruchka, M. Clemens, S. Schöps
{"title":"Parallel-in-Time Solution of Eddy Current Problems Using Implicit and Explicit Time-stepping Methods","authors":"I. C. Garcia, Iryna Kulchytska-Ruchka, M. Clemens, S. Schöps","doi":"10.1109/CEFC46938.2020.9451465","DOIUrl":null,"url":null,"abstract":"The time domain analysis of eddy current problems often requires the simulation of long time intervals, e.g. until a steady state is reached. Fast-switching excitations e.g. in pulsed-width modulated signals require in addition very small time step sizes that significantly increase computation time. To speed up the simulation, parallel-in-time methods can be used. In this paper, we investigate the combination of explicit and implicit time integration methods in the context of the parallel-in-time method Parareal and using a simplified model for the coarse propagator.","PeriodicalId":439411,"journal":{"name":"2020 IEEE 19th Biennial Conference on Electromagnetic Field Computation (CEFC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 19th Biennial Conference on Electromagnetic Field Computation (CEFC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEFC46938.2020.9451465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The time domain analysis of eddy current problems often requires the simulation of long time intervals, e.g. until a steady state is reached. Fast-switching excitations e.g. in pulsed-width modulated signals require in addition very small time step sizes that significantly increase computation time. To speed up the simulation, parallel-in-time methods can be used. In this paper, we investigate the combination of explicit and implicit time integration methods in the context of the parallel-in-time method Parareal and using a simplified model for the coarse propagator.