Analisis Sentimen Opini Publik Terhadap Undang-Undang Cipta Kerja pada Twitter Menggunakan Metode Naive Bayes Classifier

Yanuar Nurdiansyah, Fatchur Rahman, Priza Pandunata
{"title":"Analisis Sentimen Opini Publik Terhadap Undang-Undang Cipta Kerja pada Twitter Menggunakan Metode Naive Bayes Classifier","authors":"Yanuar Nurdiansyah, Fatchur Rahman, Priza Pandunata","doi":"10.54706/senastindo.v3.2021.158","DOIUrl":null,"url":null,"abstract":"Analisis sentiment atau Opinion Mining merupakan cara memecahkan suatu permasalahan berdasarkan opini masyarakat yang beredar luas di media sosial yang diekspresikan dalam bentuk teks. analisis sentimen sangat membantu pemerintahan/ suatu instansi dalam mengetahui opini publik mengenai suatu kebijakan yang baru saja dikeluarkan tanpa menggunakan metode survey konvensional. Pada analisis sentimen yang dilakukan berfokus pada Trending topik tweet pada Twitter dengan trending topic pada tanggal 5 sampai 10 oktober yaitu #Omnibuslaw, #tolakruuciptakerja, #UUCiptaKerja,  dan #tolakomnibuslaw, dan trending topic pada tanggal 21 dan 22 november yaitu \"obl makmurkan buruh\". Proses Analisis sentimen dilakukan setelah data didapatkan pada tahapan crawling data, dilanjutkan dengan pembersihan kata pada proses preprocessing, dan pembobotan kata dengan algoritma TF-IDF. Analisis sentimen menggunakan metode naive bayes classifier bertujuan agar mendapatkan klasifikasi mengenai opini publik terhadap undang-undang cipta kerja pada twitter. Terdapat dua kelas pada penelitian ini yaitu kelas positif, dan negatif. Dari 2000 dataset yang terdiri dari 1400 tweet yang bersentimen negatif & 600 tweet yang bersifat positif dipakai akan dibagi antara data training dan data testing dengan perbandingan sebesar 60%:40%, 70%:30%, 80%:20%, dan 90%:10%. Dari hasil evaluasi pada Analisis sentimen mengenai opini publik terhadap undang-undang cipta kerja pada twitter didapatkan nilai akurasi tertinggi sebesar 94% dengan data training yang dipakai sebesar 90%, data testing sebesar 10%. Pada implementasinya, hasil dari uji sentimen menunjukkan hasil sentimen negatif yang lebih tinggi dibandingkan sentimen positif.","PeriodicalId":142905,"journal":{"name":"Prosiding Seminar Nasional Sains Teknologi dan Inovasi Indonesia (SENASTINDO)","volume":"182 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prosiding Seminar Nasional Sains Teknologi dan Inovasi Indonesia (SENASTINDO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54706/senastindo.v3.2021.158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Analisis sentiment atau Opinion Mining merupakan cara memecahkan suatu permasalahan berdasarkan opini masyarakat yang beredar luas di media sosial yang diekspresikan dalam bentuk teks. analisis sentimen sangat membantu pemerintahan/ suatu instansi dalam mengetahui opini publik mengenai suatu kebijakan yang baru saja dikeluarkan tanpa menggunakan metode survey konvensional. Pada analisis sentimen yang dilakukan berfokus pada Trending topik tweet pada Twitter dengan trending topic pada tanggal 5 sampai 10 oktober yaitu #Omnibuslaw, #tolakruuciptakerja, #UUCiptaKerja,  dan #tolakomnibuslaw, dan trending topic pada tanggal 21 dan 22 november yaitu "obl makmurkan buruh". Proses Analisis sentimen dilakukan setelah data didapatkan pada tahapan crawling data, dilanjutkan dengan pembersihan kata pada proses preprocessing, dan pembobotan kata dengan algoritma TF-IDF. Analisis sentimen menggunakan metode naive bayes classifier bertujuan agar mendapatkan klasifikasi mengenai opini publik terhadap undang-undang cipta kerja pada twitter. Terdapat dua kelas pada penelitian ini yaitu kelas positif, dan negatif. Dari 2000 dataset yang terdiri dari 1400 tweet yang bersentimen negatif & 600 tweet yang bersifat positif dipakai akan dibagi antara data training dan data testing dengan perbandingan sebesar 60%:40%, 70%:30%, 80%:20%, dan 90%:10%. Dari hasil evaluasi pada Analisis sentimen mengenai opini publik terhadap undang-undang cipta kerja pada twitter didapatkan nilai akurasi tertinggi sebesar 94% dengan data training yang dipakai sebesar 90%, data testing sebesar 10%. Pada implementasinya, hasil dari uji sentimen menunjukkan hasil sentimen negatif yang lebih tinggi dibandingkan sentimen positif.
情感分析或挖掘意见是一种以文本形式表达的广泛社会舆论来解决问题的方法。情绪分析对政府/一个机构的意见有很大帮助,该政策是在不使用常规调查方法的情况下发布的。在情绪分析方面,重点是10月5日至10日在Twitter上以主题为主题的推文主题为“Omnibuslaw”、“tolakruciptakerja”、“UUCiptaKerja”、“tolakomnibuslaw”,以及11月21日和22日的话题为“工人劳动obl”。在数据爬爬的阶段获得数据,然后用TF-IDF算法对准备过程进行文字分析。感情分析是用“天真的bayes classifier”的方法进行的,目的是在twitter上获得公众舆论对著作权法的分类。这个研究有两个类,分别是正类和负类。在2000条带有负字词的推文和600条积极使用的推文中,将被分享60%:40%、70%:30%、80%:20%和90%:10%。通过对twitter上关于版权法的公众意见分析,可以获得最高的准确率为94%,培训数据占90%,测试数据为10%。在实现中,情绪测试的结果表明消极情绪的结果高于积极情绪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信