A study on cross-language knowledge integration in Mandarin LVCSR

Chen-Yu Chiang, S. Siniscalchi, Yih-Ru Wang, Sin-Horng Chen, Chin-Hui Lee
{"title":"A study on cross-language knowledge integration in Mandarin LVCSR","authors":"Chen-Yu Chiang, S. Siniscalchi, Yih-Ru Wang, Sin-Horng Chen, Chin-Hui Lee","doi":"10.1109/ISCSLP.2012.6423528","DOIUrl":null,"url":null,"abstract":"We present a cross-language knowledge integration framework to improve the performance in large vocabulary continuous speech recognition. Two types of knowledge sources, manner attribute and prosodic structure, are incorporated. For manner of articulation, cross-lingual attribute detectors trained with an American English corpus (WSJ0) are utilized to verify and rescore hypothesized Mandarin syllables in word lattices obtained with state-of-the-art systems. For the prosodic structure, models trained with an unsupervised joint prosody labeling and modeling technique using a Mandarin corpus (TCC300) are used in lattice rescoring. Experimental results on Mandarin syllable, character and word recognition with the TCC300 corpus show that the proposed approach significantly outperforms the baseline system that does not use articulatory and prosodic information. It also demonstrates a potential of utilizing results from cross-lingual attribute detectors as a language-universal frontend for automatic speech recognition.","PeriodicalId":186099,"journal":{"name":"2012 8th International Symposium on Chinese Spoken Language Processing","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCSLP.2012.6423528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We present a cross-language knowledge integration framework to improve the performance in large vocabulary continuous speech recognition. Two types of knowledge sources, manner attribute and prosodic structure, are incorporated. For manner of articulation, cross-lingual attribute detectors trained with an American English corpus (WSJ0) are utilized to verify and rescore hypothesized Mandarin syllables in word lattices obtained with state-of-the-art systems. For the prosodic structure, models trained with an unsupervised joint prosody labeling and modeling technique using a Mandarin corpus (TCC300) are used in lattice rescoring. Experimental results on Mandarin syllable, character and word recognition with the TCC300 corpus show that the proposed approach significantly outperforms the baseline system that does not use articulatory and prosodic information. It also demonstrates a potential of utilizing results from cross-lingual attribute detectors as a language-universal frontend for automatic speech recognition.
普通话LVCSR跨语言知识整合研究
为了提高大词汇量连续语音识别的性能,提出了一种跨语言知识集成框架。其中包括两种类型的知识来源:方式属性和韵律结构。在发音方式方面,使用美国英语语料库(WSJ0)训练的跨语言属性检测器来验证和重分由最先进的系统获得的词格中的假设普通话音节。对于韵律结构,使用无监督联合韵律标记和建模技术训练的模型使用普通话语料库(TCC300)进行格点评分。基于TCC300语料库的普通话音节、字符和单词识别实验结果表明,该方法显著优于不使用发音和韵律信息的基线系统。它还展示了利用跨语言属性检测器的结果作为自动语音识别的语言通用前端的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信