A novel approach to increase the robustness of speaker independent Arabic speech recognition

M. Shoaib, F. Rasheed, J. Akhtar, M. Awais, S. Masud, S. Shamail
{"title":"A novel approach to increase the robustness of speaker independent Arabic speech recognition","authors":"M. Shoaib, F. Rasheed, J. Akhtar, M. Awais, S. Masud, S. Shamail","doi":"10.1109/INMIC.2003.1416753","DOIUrl":null,"url":null,"abstract":"This work presents a two-tier approach through sequential application of intensity contours and formant tracks for accurate Arabic phoneme identification. The recognition system developed is based on data sets of 40 speakers for each Arabic phonetic sound. As a first step towards recognition of phonemes, the sound is sampled and then preprocessed to get formant frequencies and intensity contours. In order to automate the intensity and formant based feature extraction, a generalized regression neural network has been implemented, trained and validated on 21 input features.","PeriodicalId":253329,"journal":{"name":"7th International Multi Topic Conference, 2003. INMIC 2003.","volume":"65 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Multi Topic Conference, 2003. INMIC 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2003.1416753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This work presents a two-tier approach through sequential application of intensity contours and formant tracks for accurate Arabic phoneme identification. The recognition system developed is based on data sets of 40 speakers for each Arabic phonetic sound. As a first step towards recognition of phonemes, the sound is sampled and then preprocessed to get formant frequencies and intensity contours. In order to automate the intensity and formant based feature extraction, a generalized regression neural network has been implemented, trained and validated on 21 input features.
一种提高独立说话人阿拉伯语语音识别鲁棒性的新方法
这项工作提出了一种两层的方法,通过顺序应用强度轮廓和构象轨道,以准确的阿拉伯音素识别。所开发的识别系统是基于每个阿拉伯语音的40个说话者的数据集。作为识别音素的第一步,对声音进行采样,然后进行预处理以获得形成峰频率和强度轮廓。为了实现基于强度和形状特征提取的自动化,实现了一个广义回归神经网络,并对21个输入特征进行了训练和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信