{"title":"Using a Low Phase Noise H-Maser as a Local Oscillator for an Rb Fountain Discriminator","authors":"M. Aleynikov, A. Boyko, I. Blinov, S. Donchenko","doi":"10.1109/FCS.2018.8597482","DOIUrl":null,"url":null,"abstract":"One of the main problem of achieving a quantum noise limited frequency stability in atomic clocks operating in cycle mode, e.g. fountain or pulsed optically pumped (POP) atomic clock, is a phase noise of interrogation signal probing the atom transition. In the present work a solution of the problem via application of a special hydrogen maser with increased power radiated by atomic beam or a low phase noise H-maser as a reference in synthesis scheme of the interrogation signal is described. This solution caused by simplicity because it requires neither cryogenic microwave oscillators nor complicated optical systems techniques.","PeriodicalId":180164,"journal":{"name":"2018 IEEE International Frequency Control Symposium (IFCS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Frequency Control Symposium (IFCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCS.2018.8597482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
One of the main problem of achieving a quantum noise limited frequency stability in atomic clocks operating in cycle mode, e.g. fountain or pulsed optically pumped (POP) atomic clock, is a phase noise of interrogation signal probing the atom transition. In the present work a solution of the problem via application of a special hydrogen maser with increased power radiated by atomic beam or a low phase noise H-maser as a reference in synthesis scheme of the interrogation signal is described. This solution caused by simplicity because it requires neither cryogenic microwave oscillators nor complicated optical systems techniques.