An adaptive wavelet denoising method for the measuring system of EMP signals

Shi Lihua, Chen Bin, Zhou Binhua, Gao Cheng
{"title":"An adaptive wavelet denoising method for the measuring system of EMP signals","authors":"Shi Lihua, Chen Bin, Zhou Binhua, Gao Cheng","doi":"10.1109/CEEM.2000.853917","DOIUrl":null,"url":null,"abstract":"An adaptive wavelet denoising method is proposed to eliminate the noise induced by the measuring system of EMP signals. This method employs a threshold-searching strategy to select an optimal denoising threshold for a given system. Wavelet decomposition and reconstruction are combined with neural network nonlinear threshold-filtering units in the new denoising algorithm. Based on a group of training signal, the denoising threshold can be learned adaptively. The training algorithm and application examples are given in this paper.","PeriodicalId":153945,"journal":{"name":"Proceedings. Asia-Pacific Conference on Environmental Electromagnetics. CEEM'2000 (IEEE Cat. No.00EX402)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Asia-Pacific Conference on Environmental Electromagnetics. CEEM'2000 (IEEE Cat. No.00EX402)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEM.2000.853917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An adaptive wavelet denoising method is proposed to eliminate the noise induced by the measuring system of EMP signals. This method employs a threshold-searching strategy to select an optimal denoising threshold for a given system. Wavelet decomposition and reconstruction are combined with neural network nonlinear threshold-filtering units in the new denoising algorithm. Based on a group of training signal, the denoising threshold can be learned adaptively. The training algorithm and application examples are given in this paper.
EMP信号测量系统的自适应小波去噪方法
针对电磁脉冲信号测量系统中产生的噪声,提出了一种自适应小波去噪方法。该方法采用阈值搜索策略,对给定系统选择最优去噪阈值。在新的去噪算法中,将小波分解和重构与神经网络非线性阈值滤波单元相结合。基于一组训练信号,自适应学习去噪阈值。文中给出了训练算法和应用实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信