A KPI-related multiplicative fault diagnosis scheme for industrial processes

Haiyang Hao, Kai Zhang, S. Ding, Zhi-wen Chen, Y. Lei, Zhi-kun Hu
{"title":"A KPI-related multiplicative fault diagnosis scheme for industrial processes","authors":"Haiyang Hao, Kai Zhang, S. Ding, Zhi-wen Chen, Y. Lei, Zhi-kun Hu","doi":"10.1109/ICCA.2013.6565167","DOIUrl":null,"url":null,"abstract":"In this paper, a key performance indicator (KPI) related multiplicative fault diagnosis scheme is proposed for static industrial processes. This scheme is developed for an alternative algorithm to the standard partial least squares (PLS) based process monitoring, where no design parameter like “latent variable number” is involved. Based on both normal and faulty data sets, the multiplicative fault information is firstly estimated. With this knowledge, the most critical low-level control loop/component is further identified. Different from the existing data-driven additive fault diagnosis approaches, this scheme aims to handle the second order statistics, which is of fatal importance for KPI-related fault diagnosis. Finally, an academic example is investigated to illustrate the functionality of this scheme.","PeriodicalId":336534,"journal":{"name":"2013 10th IEEE International Conference on Control and Automation (ICCA)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th IEEE International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2013.6565167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, a key performance indicator (KPI) related multiplicative fault diagnosis scheme is proposed for static industrial processes. This scheme is developed for an alternative algorithm to the standard partial least squares (PLS) based process monitoring, where no design parameter like “latent variable number” is involved. Based on both normal and faulty data sets, the multiplicative fault information is firstly estimated. With this knowledge, the most critical low-level control loop/component is further identified. Different from the existing data-driven additive fault diagnosis approaches, this scheme aims to handle the second order statistics, which is of fatal importance for KPI-related fault diagnosis. Finally, an academic example is investigated to illustrate the functionality of this scheme.
一种基于kpi的工业过程乘法故障诊断方案
针对静态工业过程,提出了一种基于关键绩效指标(KPI)的乘法故障诊断方案。该方案是针对基于标准偏最小二乘(PLS)的过程监控的替代算法而开发的,其中不涉及“潜在变量数”等设计参数。首先在正常数据集和故障数据集的基础上,估计出故障信息的乘积性;有了这些知识,最关键的低级控制回路/组件被进一步确定。与现有数据驱动的加性故障诊断方法不同,该方案旨在处理二阶统计量,而二阶统计量对于kpi相关的故障诊断至关重要。最后,通过一个学术实例说明了该方案的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信