Robust Region Descriptors for Shape Classification

Cong Lin, Chi-Man Pun
{"title":"Robust Region Descriptors for Shape Classification","authors":"Cong Lin, Chi-Man Pun","doi":"10.1109/CGIV.2016.59","DOIUrl":null,"url":null,"abstract":"A novel scheme for efficient shape classification using region descriptors and extreme learning machine with kernels is proposed. The skeleton and boundary of the input shape image are first extracted. Then the boundary is simplified to remove noise and minor variations. Finally, region descriptors for the local skeleton, and the simplified shape signature are constructed to form a hybrid feature vector. Training and classification are then performed using kernel extreme learning machine (k-ELM) for efficient shape classification. Experimental results show that the proposed scheme is very fast and can archive higher classification accuracy on the challenging MPEG-7 dataset, outperforming existing state-of-the-art methods.","PeriodicalId":351561,"journal":{"name":"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)","volume":"175 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGIV.2016.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A novel scheme for efficient shape classification using region descriptors and extreme learning machine with kernels is proposed. The skeleton and boundary of the input shape image are first extracted. Then the boundary is simplified to remove noise and minor variations. Finally, region descriptors for the local skeleton, and the simplified shape signature are constructed to form a hybrid feature vector. Training and classification are then performed using kernel extreme learning machine (k-ELM) for efficient shape classification. Experimental results show that the proposed scheme is very fast and can archive higher classification accuracy on the challenging MPEG-7 dataset, outperforming existing state-of-the-art methods.
形状分类的鲁棒区域描述符
提出了一种基于区域描述符和带核极限学习机的高效形状分类方案。首先提取输入形状图像的骨架和边界。然后对边界进行简化,去除噪声和微小的变化。最后,构造局部骨架的区域描述子和简化的形状特征,形成混合特征向量。然后使用核极限学习机(k-ELM)进行训练和分类,以实现有效的形状分类。实验结果表明,该方法速度快,在具有挑战性的MPEG-7数据集上具有较高的分类精度,优于现有的先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信