A Method for Feature Subset Selection in Software Product Lines

Nahid Hajizadeh, Peyman Jahanbazi, R. Akbari
{"title":"A Method for Feature Subset Selection in Software Product Lines","authors":"Nahid Hajizadeh, Peyman Jahanbazi, R. Akbari","doi":"10.4018/ijsi.315654","DOIUrl":null,"url":null,"abstract":"Software product line (SPL) represents methods, tools, and techniques for creating a group of related software systems. Each product is a combination of multiple features. So, the task of production can be mapped to a feature subset selection problem, which is an NP-hard problem. This issue is very significant when the number of features in a software product line is huge. This chapter is aimed to address the feature subset selection in software product lines. Furthermore, the authors aim at studying the performance of a proposed multi-objective method in solving this NP-hard problem. Here, a multi-objective method (MOBAFS) is presented for feature selection in SPLs. The MOBAFS is a an optimization algorithm, which is inspired by the foraging behavior of honeybees. This technique is evaluated on five large-scale real-world software product lines in the range of 1,244 to 6,888 features. The proposed method is compared with the SATIBEA. According to the results of three solution quality indicators and two diversity metrics, the proposed method, in most cases, surpasses the other algorithm.","PeriodicalId":396598,"journal":{"name":"Int. J. Softw. Innov.","volume":"218 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Innov.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsi.315654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Software product line (SPL) represents methods, tools, and techniques for creating a group of related software systems. Each product is a combination of multiple features. So, the task of production can be mapped to a feature subset selection problem, which is an NP-hard problem. This issue is very significant when the number of features in a software product line is huge. This chapter is aimed to address the feature subset selection in software product lines. Furthermore, the authors aim at studying the performance of a proposed multi-objective method in solving this NP-hard problem. Here, a multi-objective method (MOBAFS) is presented for feature selection in SPLs. The MOBAFS is a an optimization algorithm, which is inspired by the foraging behavior of honeybees. This technique is evaluated on five large-scale real-world software product lines in the range of 1,244 to 6,888 features. The proposed method is compared with the SATIBEA. According to the results of three solution quality indicators and two diversity metrics, the proposed method, in most cases, surpasses the other algorithm.
一种软件产品线特征子集选择方法
软件产品线(SPL)表示用于创建一组相关软件系统的方法、工具和技术。每个产品都是多种功能的组合。因此,生产任务可以映射为特征子集选择问题,这是一个np困难问题。当软件产品线中的特性数量很大时,这个问题非常重要。本章旨在解决软件产品线中的特性子集选择问题。此外,作者还研究了一种求解np困难问题的多目标方法的性能。本文提出了一种多目标特征选择方法(MOBAFS)。MOBAFS是一种受蜜蜂觅食行为启发的优化算法。该技术在五个大规模的实际软件产品线上进行了评估,范围为1,244到6,888个特性。并与SATIBEA进行了比较。根据三个解质量指标和两个多样性指标的结果,该方法在大多数情况下优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信