{"title":"NIR image colorization with graph-convolutional neural networks","authors":"D. Valsesia, Giulia Fracastoro, E. Magli","doi":"10.1109/VCIP49819.2020.9301839","DOIUrl":null,"url":null,"abstract":"Colorization of near-infrared (NIR) images is a challenging problem due to the different material properties at the infared wavelenghts, thus reducing the correlation with visible images. In this paper, we study how graph-convolutional neural networks allow exploiting a more powerful inductive bias than standard CNNs, in the form of non-local self-similiarity. Its impact is evaluated by showing how training with mean squared error only as loss leads to poor results with a standard CNN, while the graph-convolutional network produces significantly sharper and more realistic colorizations.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"487 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Colorization of near-infrared (NIR) images is a challenging problem due to the different material properties at the infared wavelenghts, thus reducing the correlation with visible images. In this paper, we study how graph-convolutional neural networks allow exploiting a more powerful inductive bias than standard CNNs, in the form of non-local self-similiarity. Its impact is evaluated by showing how training with mean squared error only as loss leads to poor results with a standard CNN, while the graph-convolutional network produces significantly sharper and more realistic colorizations.