Wetland remote sensing classification using support vector machine optimized with co-evolutionary algorithm

Xiaodong Yu, Hongbin Dong
{"title":"Wetland remote sensing classification using support vector machine optimized with co-evolutionary algorithm","authors":"Xiaodong Yu, Hongbin Dong","doi":"10.1109/ICIS.2017.7960046","DOIUrl":null,"url":null,"abstract":"In order to improve the accuracy of support vector machine (SVM) classification of wetland remote sensing images, the selection of kernel function parameters in support vector machines becomes an effective approach. In this paper, Particle Swarm Optimization and Genetic Algorithms (PSO-GA) co-evolutionary algorithm are used to optimize the SVM parameters. Because of the complementarity of evolutionary features between PSO and GA, this algorithm is combined with PSO and GA to improve the convergence speed and realize the optimization of depth and breadth. Experimental results show that SVM with PSO-GA co-evolutionary algorithm can achieve high classification accuracy in finite iteration times compared with existing intelligent optimization algorithms.","PeriodicalId":301467,"journal":{"name":"2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIS.2017.7960046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In order to improve the accuracy of support vector machine (SVM) classification of wetland remote sensing images, the selection of kernel function parameters in support vector machines becomes an effective approach. In this paper, Particle Swarm Optimization and Genetic Algorithms (PSO-GA) co-evolutionary algorithm are used to optimize the SVM parameters. Because of the complementarity of evolutionary features between PSO and GA, this algorithm is combined with PSO and GA to improve the convergence speed and realize the optimization of depth and breadth. Experimental results show that SVM with PSO-GA co-evolutionary algorithm can achieve high classification accuracy in finite iteration times compared with existing intelligent optimization algorithms.
协同进化算法优化的支持向量机湿地遥感分类
为了提高支持向量机(SVM)对湿地遥感图像的分类精度,支持向量机核函数参数的选择成为一种有效的方法。本文采用粒子群算法和遗传算法(PSO-GA)协同进化算法对支持向量机参数进行优化。由于粒子群算法与遗传算法的进化特征具有互补性,该算法将粒子群算法与遗传算法相结合,提高了收敛速度,实现了深度和广度的优化。实验结果表明,与现有的智能优化算法相比,基于PSO-GA协同进化算法的支持向量机在有限迭代次数内实现了较高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信