PERBANDINGAN ARSITEKTUR CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI FUNDUS

W. Setiawan
{"title":"PERBANDINGAN ARSITEKTUR CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI FUNDUS","authors":"W. Setiawan","doi":"10.21107/simantec.v7i2.6551","DOIUrl":null,"url":null,"abstract":"Pada artikel ini membahas tentang perbandingan arsitektur Convolutional Neural Network (CNN) untuk klasifikasi citra fundus. Arsitektur CNN yang diujicobakan yaitu AlexNet, Visual Geometry Group (VGG) 16, VGG19, Residual Network (ResNet) 50, ResNet101, GoogleNet, Inception-V3, InceptionResNetV2 dan Squeezenet. Citra ujicoba menggunakan fundus retina utnuk mengklasifikasi 2 kelas yaitu normal dan neovaskularisasi. Citra dilakukan preprosesing yaitu dengan membaginya menjadi 16 bagian yang sama. Skenario ujicoba menggunakan 2 tahap yaitu, pertama, menggunakan CNN tanpa optimasi tambahan, kedua, CNN menggunakan optimasi Gradient Descent. Hasil ujicoba pada kedua skenario menunjukkan arsitektur terbaik yaitu VGG19 dan VGG16. Ujicoba tahap pertama menghasilkan sensitivitas, spesifisitas dan akurasi yaitu 87,8%, 90,7% dan 89,3%. Untuk ujicoba tahap kedua sensitivitas, spesifisitas dan akurasi yaitu 94,2%, 90,4% dan 92,31%.","PeriodicalId":143836,"journal":{"name":"Jurnal Simantec","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Simantec","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21107/simantec.v7i2.6551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Pada artikel ini membahas tentang perbandingan arsitektur Convolutional Neural Network (CNN) untuk klasifikasi citra fundus. Arsitektur CNN yang diujicobakan yaitu AlexNet, Visual Geometry Group (VGG) 16, VGG19, Residual Network (ResNet) 50, ResNet101, GoogleNet, Inception-V3, InceptionResNetV2 dan Squeezenet. Citra ujicoba menggunakan fundus retina utnuk mengklasifikasi 2 kelas yaitu normal dan neovaskularisasi. Citra dilakukan preprosesing yaitu dengan membaginya menjadi 16 bagian yang sama. Skenario ujicoba menggunakan 2 tahap yaitu, pertama, menggunakan CNN tanpa optimasi tambahan, kedua, CNN menggunakan optimasi Gradient Descent. Hasil ujicoba pada kedua skenario menunjukkan arsitektur terbaik yaitu VGG19 dan VGG16. Ujicoba tahap pertama menghasilkan sensitivitas, spesifisitas dan akurasi yaitu 87,8%, 90,7% dan 89,3%. Untuk ujicoba tahap kedua sensitivitas, spesifisitas dan akurasi yaitu 94,2%, 90,4% dan 92,31%.
FUNDUS分类的神经对联性结构比较
这篇文章讨论了fundus图像分类的神经通路架构比较。CNN测试的建筑是AlexNet,视觉几何组(VGG) 16、VGG19、剩下的网络(ResNet101) 50、ResNet101、GoogleNet、inceptionresnet2、squeezv2和Squeezenet。测试图像使用视网膜fundus utnuk将正常和新的血管化分为两个类。图像是预先准备的,即将其分成16等份。测试场景使用两个阶段,第一,使用CNN没有额外的优化,第二,CNN使用梯级级的优化。这两种情况的测试结果都表明,最优秀的建筑是VGG19和VGG16。第一阶段的试验产生的敏感性、特殊性和精确度为87.8%、90.7%和89.3%。第二阶段的灵敏度测试是94.2%、90.4%和92.31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信