Object Depth Estimation From Line-Scan EMI Data Using Machine Learning

M. Šimić, D. Ambruš, V. Bilas
{"title":"Object Depth Estimation From Line-Scan EMI Data Using Machine Learning","authors":"M. Šimić, D. Ambruš, V. Bilas","doi":"10.1109/SENSORS52175.2022.9967098","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel approach to metallic object depth estimation using a pulse induction metal detector in combination with an electromagnetic tracking system. A dipole approximation model is used for modeling the spatial response of the metal detector, while 1D-convolutional neural network is employed for depth estimation. The proposed algorithm is experimentally validated in laboratory conditions. Given a single horizontal pass over a metallic object placed within the range (−10.5, −2.5) cm and (−1,1) cm for the $\\boldsymbol{z}$ and $\\{\\boldsymbol{x},\\boldsymbol{y}\\}$ coordinates, respectively, the algorithm estimates the depth of the object regardless of its shape, size, and material properties with a mean absolute error $< \\mathbf{4}.\\mathbf{5}\\ \\mathbf{mm}$.","PeriodicalId":120357,"journal":{"name":"2022 IEEE Sensors","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS52175.2022.9967098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present a novel approach to metallic object depth estimation using a pulse induction metal detector in combination with an electromagnetic tracking system. A dipole approximation model is used for modeling the spatial response of the metal detector, while 1D-convolutional neural network is employed for depth estimation. The proposed algorithm is experimentally validated in laboratory conditions. Given a single horizontal pass over a metallic object placed within the range (−10.5, −2.5) cm and (−1,1) cm for the $\boldsymbol{z}$ and $\{\boldsymbol{x},\boldsymbol{y}\}$ coordinates, respectively, the algorithm estimates the depth of the object regardless of its shape, size, and material properties with a mean absolute error $< \mathbf{4}.\mathbf{5}\ \mathbf{mm}$.
利用机器学习从线扫描EMI数据中估计目标深度
本文提出了一种利用脉冲感应金属探测器结合电磁跟踪系统进行金属目标深度估计的新方法。采用偶极子近似模型对金属探测器的空间响应进行建模,采用一维卷积神经网络进行深度估计。该算法在实验室条件下进行了实验验证。对于$\boldsymbol{z}$和$\boldsymbol{x},\boldsymbol{y}\}$坐标系,给定金属物体在(−10.5,−2.5)cm和(−1,1)cm范围内的单次水平通过,该算法估计物体的深度,无论其形状、大小和材料属性如何,平均绝对误差$< \mathbf{4}。\ mathbf {5} \ \ mathbf {mm} $。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信