Bootstrapping Autoregressive Plus Noise Processes

C. Debes, A. Zoubir
{"title":"Bootstrapping Autoregressive Plus Noise Processes","authors":"C. Debes, A. Zoubir","doi":"10.1109/CAMSAP.2007.4497963","DOIUrl":null,"url":null,"abstract":"We address the problem of estimating confidence intervals for the parameters of an autoregressive plus noise process, in particular when the additive noise is non-Gaussian. We demonstrate how the independent data bootstrap can be used to solve this problem. We motivate an autoregressive moving-average modeling approach and apply the recursive maximum algorithm for parameter estimation. Computer simulations are carried out to show the performance of the proposed method. Furthermore a real data example from automotive engineering has been considered for assessing our approach. Using a pressure signal from inside the combustion chamber, we show how confidence intervals for the autoregressive parameters can be calculated.","PeriodicalId":220687,"journal":{"name":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2007.4497963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We address the problem of estimating confidence intervals for the parameters of an autoregressive plus noise process, in particular when the additive noise is non-Gaussian. We demonstrate how the independent data bootstrap can be used to solve this problem. We motivate an autoregressive moving-average modeling approach and apply the recursive maximum algorithm for parameter estimation. Computer simulations are carried out to show the performance of the proposed method. Furthermore a real data example from automotive engineering has been considered for assessing our approach. Using a pressure signal from inside the combustion chamber, we show how confidence intervals for the autoregressive parameters can be calculated.
自举自回归加噪声过程
我们解决了估计自回归加噪声过程参数置信区间的问题,特别是当加性噪声是非高斯噪声时。我们将演示如何使用独立数据引导来解决这个问题。我们提出了一种自回归移动平均建模方法,并应用递归极大值算法进行参数估计。计算机仿真验证了该方法的有效性。此外,还考虑了一个来自汽车工程的真实数据示例来评估我们的方法。使用来自燃烧室内部的压力信号,我们展示了如何计算自回归参数的置信区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信