PCA Methods and Evidence Based Filtering for Robust Aircraft Sensor Fault Diagnosis

N. Cartocci, G. Costante, M. Napolitano, P. Valigi, F. Crocetti, M. L. Fravolini
{"title":"PCA Methods and Evidence Based Filtering for Robust Aircraft Sensor Fault Diagnosis","authors":"N. Cartocci, G. Costante, M. Napolitano, P. Valigi, F. Crocetti, M. L. Fravolini","doi":"10.1109/MED48518.2020.9182973","DOIUrl":null,"url":null,"abstract":"In this paper PCA and D-PCA techniques are applied for the design of a Data Driven diagnostic Fault Isolation (FI) and Fault Estimation (FE) scheme for 18 primary sensors of a semi-autonomous aircraft. Specifically, Contributions-based, and Reconstruction-based Contributions approaches have been considered. To improve FI performance an inference mechanism derived from evidence-based decision making theory has been proposed. A detailed FI and FE study is presented for the True Airspeed sensor based on experimental data. Evidence Based Filtering (EBF) showed to be very effective particularly in reducing false alarms.","PeriodicalId":418518,"journal":{"name":"2020 28th Mediterranean Conference on Control and Automation (MED)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED48518.2020.9182973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper PCA and D-PCA techniques are applied for the design of a Data Driven diagnostic Fault Isolation (FI) and Fault Estimation (FE) scheme for 18 primary sensors of a semi-autonomous aircraft. Specifically, Contributions-based, and Reconstruction-based Contributions approaches have been considered. To improve FI performance an inference mechanism derived from evidence-based decision making theory has been proposed. A detailed FI and FE study is presented for the True Airspeed sensor based on experimental data. Evidence Based Filtering (EBF) showed to be very effective particularly in reducing false alarms.
鲁棒飞机传感器故障诊断的PCA方法和基于证据的滤波
本文将主成分分析和d -主成分分析技术应用于某半自主飞机18个主传感器的数据驱动诊断故障隔离和故障估计方案的设计。具体来说,考虑了基于贡献和基于重建的贡献方法。为了提高FI绩效,本文提出了一种基于循证决策理论的推理机制。基于实验数据,对真空速传感器进行了详细的FI和FE研究。基于证据的滤波(EBF)在减少误报方面非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信