Human vs Bots: Detecting Human Attacks in a Honeypot Environment

Shreya Udhani, A. Withers, Masooda N. Bashir
{"title":"Human vs Bots: Detecting Human Attacks in a Honeypot Environment","authors":"Shreya Udhani, A. Withers, Masooda N. Bashir","doi":"10.1109/ISDFS.2019.8757534","DOIUrl":null,"url":null,"abstract":"The increase in the automated attacks has motivated security researchers to focus on identifying patterns of attacker to safeguard the system. Humans have some basic behavioral characteristics and limitations, which can be identified and used to distinguish them from automated attackers. The network log data collected from a Honeypot uncovers such traits which are otherwise not noticeable. The paper analyses a SSH-based Honeypot deployed over a period of 423 days to identify human behavior traits which can essentially distinguish an automated attacker and a human attacker.","PeriodicalId":247412,"journal":{"name":"2019 7th International Symposium on Digital Forensics and Security (ISDFS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Symposium on Digital Forensics and Security (ISDFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDFS.2019.8757534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The increase in the automated attacks has motivated security researchers to focus on identifying patterns of attacker to safeguard the system. Humans have some basic behavioral characteristics and limitations, which can be identified and used to distinguish them from automated attackers. The network log data collected from a Honeypot uncovers such traits which are otherwise not noticeable. The paper analyses a SSH-based Honeypot deployed over a period of 423 days to identify human behavior traits which can essentially distinguish an automated attacker and a human attacker.
人类与机器人:在蜜罐环境中检测人类攻击
自动化攻击的增加促使安全研究人员将重点放在识别攻击者的模式上,以保护系统。人类有一些基本的行为特征和局限性,可以识别并用于区分他们与自动攻击者。从蜜罐收集的网络日志数据揭示了这些在其他情况下不引人注意的特征。本文分析了一个部署了423天的基于ssh的蜜罐,以识别人类行为特征,这些特征可以从本质上区分自动攻击者和人类攻击者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信