Ontology-assisted keyword search for NeuroML models

J. Birgiolas, S. Dietrich, S. Crook, Ashwin Rajadesingan, Chao Zhang, Shriharsha Velugoti Penchala, Veerasekhar Addepalli
{"title":"Ontology-assisted keyword search for NeuroML models","authors":"J. Birgiolas, S. Dietrich, S. Crook, Ashwin Rajadesingan, Chao Zhang, Shriharsha Velugoti Penchala, Veerasekhar Addepalli","doi":"10.1145/2791347.2791360","DOIUrl":null,"url":null,"abstract":"NeuroML is an extensible markup language for describing complex mathematical models of neurons and neuronal networks. NeuroML is unique in its modular, multi-scale structure -- not only can entire NeuroML models be exchanged, but subcomponents of these models that correspond to neuroscience objects, like channels or synapses, also can be shared and reimplemented in a different model. This paper presents the design, implementation, and evaluation of an ontology-assisted search for NeuroML models. Specifically, the paper describes the design of the system, including the database that stores the modular NeuroML models and the architecture of the Web-based search (neuroml-db.org). The implementation takes advantage of the nested structure of NeuroML models and the NeuroLex ontology for neuroscience to provide additional semantic information to enhance the search. In addition to NeuroLex terms that may exist in model metadata, this initial implementation takes advantage of several semantic relationships provided by the NeuroLex ontology: Is_part_of, Located_in, and Neurotransmitter. An evaluation of the system illustrates its effectiveness both for functionality and performance, covering various types of searches broken down by keyword searches over the database and ontology searches using the semantic relationships.","PeriodicalId":225179,"journal":{"name":"Proceedings of the 27th International Conference on Scientific and Statistical Database Management","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2791347.2791360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

NeuroML is an extensible markup language for describing complex mathematical models of neurons and neuronal networks. NeuroML is unique in its modular, multi-scale structure -- not only can entire NeuroML models be exchanged, but subcomponents of these models that correspond to neuroscience objects, like channels or synapses, also can be shared and reimplemented in a different model. This paper presents the design, implementation, and evaluation of an ontology-assisted search for NeuroML models. Specifically, the paper describes the design of the system, including the database that stores the modular NeuroML models and the architecture of the Web-based search (neuroml-db.org). The implementation takes advantage of the nested structure of NeuroML models and the NeuroLex ontology for neuroscience to provide additional semantic information to enhance the search. In addition to NeuroLex terms that may exist in model metadata, this initial implementation takes advantage of several semantic relationships provided by the NeuroLex ontology: Is_part_of, Located_in, and Neurotransmitter. An evaluation of the system illustrates its effectiveness both for functionality and performance, covering various types of searches broken down by keyword searches over the database and ontology searches using the semantic relationships.
NeuroML模型的本体辅助关键字搜索
NeuroML是一种可扩展的标记语言,用于描述神经元和神经元网络的复杂数学模型。NeuroML的独特之处在于它的模块化、多尺度结构——不仅可以交换整个NeuroML模型,而且这些模型的子组件(对应于神经科学对象,如通道或突触)也可以在不同的模型中共享和重新实现。本文介绍了NeuroML模型的本体辅助搜索的设计、实现和评估。具体来说,本文描述了系统的设计,包括存储模块化神经机器学习模型的数据库和基于web的搜索架构(NeuroML -db.org)。该实现利用了NeuroML模型的嵌套结构和神经科学的NeuroLex本体来提供额外的语义信息,以增强搜索。除了可能存在于模型元数据中的NeuroLex术语外,这个初始实现还利用了NeuroLex本体提供的几个语义关系:Is_part_of、Located_in和Neurotransmitter。对系统的评估说明了它在功能和性能方面的有效性,涵盖了通过对数据库的关键字搜索和使用语义关系的本体搜索分解的各种类型的搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信