Efficient adjust of a learning based fault locator for power distribution systems

J. Gutiérrez-Gallego, S. Pérez-Londoño, J. Mora-Flórez
{"title":"Efficient adjust of a learning based fault locator for power distribution systems","authors":"J. Gutiérrez-Gallego, S. Pérez-Londoño, J. Mora-Flórez","doi":"10.1109/TDC-LA.2010.5762972","DOIUrl":null,"url":null,"abstract":"The fault location method proposed in this paper uses a classification technique as the support vector machines (SVM), and an intelligent search based on variable neighborhood techniques to select the configuration parameters of the SVM. As result, a strategy is proposed to relate a set of descriptor obtained from single end measurements of voltage and current (input) to the faulted zone (output), in a classical classification task. The proposed approach is tested in selection of the best calibration parameters of a SVM based fault locator and the best error in classification of 3.7% is then obtained considering all of the fault types. These results show the adequate performance of the proposed methodology applied in real power systems.","PeriodicalId":222318,"journal":{"name":"2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America (T&D-LA)","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America (T&D-LA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC-LA.2010.5762972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The fault location method proposed in this paper uses a classification technique as the support vector machines (SVM), and an intelligent search based on variable neighborhood techniques to select the configuration parameters of the SVM. As result, a strategy is proposed to relate a set of descriptor obtained from single end measurements of voltage and current (input) to the faulted zone (output), in a classical classification task. The proposed approach is tested in selection of the best calibration parameters of a SVM based fault locator and the best error in classification of 3.7% is then obtained considering all of the fault types. These results show the adequate performance of the proposed methodology applied in real power systems.
基于学习的配电系统故障定位器的有效调整
本文提出的故障定位方法采用分类技术作为支持向量机(SVM),并基于变邻域技术的智能搜索来选择支持向量机的配置参数。因此,在经典的分类任务中,提出了一种将电压和电流单端测量(输入)得到的一组描述符与故障区域(输出)相关联的策略。将该方法应用于基于支持向量机的故障定位器的最佳标定参数选择中,在考虑所有故障类型的情况下,得到了最佳的分类误差为3.7%。这些结果表明,所提出的方法在实际电力系统中的应用具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信