Text Analytics Architecture in IoT Systems

Diego Fuentalba, C. Durán, Charles Guillaume, R. Carrasco, S. Gutiérrez, Oscar P. Pinto
{"title":"Text Analytics Architecture in IoT Systems","authors":"Diego Fuentalba, C. Durán, Charles Guillaume, R. Carrasco, S. Gutiérrez, Oscar P. Pinto","doi":"10.1109/SACVLC53127.2021.9652319","DOIUrl":null,"url":null,"abstract":"Management control and monitoring of production activities in intelligent environments in subway mines must be aligned with the strategies and objectives of each agent. It is required that in operations, the local structure of each service is fault-tolerant and that large amounts of data are transmitted online to executives to make effective and efficient decisions. The paper proposes an architecture that enables strategic text analysis on the Internet of Things devices through task partitioning with multiple agent systems and evaluates the feasibility of the design by building a prototype that improves communication. The results validate the system's design because Raspberry Pi can execute text mining algorithms and agents in about 3 seconds for 197 texts. This work emphasizes multiple agents for text analytics because the algorithms, along with the agents, use about 70% of a Raspberry Pi CPU.","PeriodicalId":235918,"journal":{"name":"2021 Third South American Colloquium on Visible Light Communications (SACVLC)","volume":"41 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Third South American Colloquium on Visible Light Communications (SACVLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACVLC53127.2021.9652319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Management control and monitoring of production activities in intelligent environments in subway mines must be aligned with the strategies and objectives of each agent. It is required that in operations, the local structure of each service is fault-tolerant and that large amounts of data are transmitted online to executives to make effective and efficient decisions. The paper proposes an architecture that enables strategic text analysis on the Internet of Things devices through task partitioning with multiple agent systems and evaluates the feasibility of the design by building a prototype that improves communication. The results validate the system's design because Raspberry Pi can execute text mining algorithms and agents in about 3 seconds for 197 texts. This work emphasizes multiple agents for text analytics because the algorithms, along with the agents, use about 70% of a Raspberry Pi CPU.
物联网系统中的文本分析架构
智能环境下地铁矿山生产活动的管理控制和监控必须与各agent的策略和目标相一致。在操作中,要求每个服务的本地结构都是容错的,并且需要将大量数据在线传输给执行人员,以做出有效和高效的决策。本文提出了一种架构,通过与多个智能体系统的任务划分,在物联网设备上实现战略文本分析,并通过构建一个改进通信的原型来评估该设计的可行性。结果验证了系统的设计,因为树莓派可以在大约3秒内对197个文本执行文本挖掘算法和代理。这项工作强调文本分析的多个代理,因为算法和代理一起使用大约70%的树莓派CPU。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信