Sum-Capacity and MMSE for the MIMO Broadcast Channel without Eigenvalue Decompositions

R. Hunger, D. Schmidt, W. Utschick
{"title":"Sum-Capacity and MMSE for the MIMO Broadcast Channel without Eigenvalue Decompositions","authors":"R. Hunger, D. Schmidt, W. Utschick","doi":"10.1109/ISIT.2007.4557107","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel algorithm for determining the sum-rate optimal transmit covariance matrices for the MIMO broadcast channel. Instead of optimizing the covariances directly, our algorithm operates on the preceding matrices, i.e., the square roots of the covariances. As a result, no eigenvalue decompositions are required in the iterations, and the complexity per iteration is significantly lower. A look at the convergence over the required number of computations shows a visible advantage over the state-of-the-art sum power iterative waterfilling algorithm. Also, our algorithm allows us to find the optimal sum-rate for an arbitrarily limited number of data streams per user. Finally, with a simple modification, our algorithm can also be used for sum-MSE minimization.","PeriodicalId":193467,"journal":{"name":"2007 IEEE International Symposium on Information Theory","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2007.4557107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In this paper, we present a novel algorithm for determining the sum-rate optimal transmit covariance matrices for the MIMO broadcast channel. Instead of optimizing the covariances directly, our algorithm operates on the preceding matrices, i.e., the square roots of the covariances. As a result, no eigenvalue decompositions are required in the iterations, and the complexity per iteration is significantly lower. A look at the convergence over the required number of computations shows a visible advantage over the state-of-the-art sum power iterative waterfilling algorithm. Also, our algorithm allows us to find the optimal sum-rate for an arbitrarily limited number of data streams per user. Finally, with a simple modification, our algorithm can also be used for sum-MSE minimization.
无特征值分解的MIMO广播信道的和容量和MMSE
本文提出了一种确定MIMO广播信道和速率最优发射协方差矩阵的新算法。我们的算法不是直接优化协方差,而是对前面的矩阵进行操作,即协方差的平方根。因此,迭代中不需要特征值分解,并且每次迭代的复杂度显著降低。从所需计算次数的收敛性来看,与最先进的和幂迭代注水算法相比,该算法具有明显的优势。此外,我们的算法允许我们为每个用户任意有限数量的数据流找到最优求和速率。最后,通过一个简单的修改,我们的算法也可以用于和- mse最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信