Closed form solutions of contaminant transport into semi-infinite soil with non-equilibrium sorption from a finite diminishing surface source

C. Leo, H. Wong
{"title":"Closed form solutions of contaminant transport into semi-infinite soil with non-equilibrium sorption from a finite diminishing surface source","authors":"C. Leo, H. Wong","doi":"10.1080/17747120.2007.9692933","DOIUrl":null,"url":null,"abstract":"ABSTRACT Closed form solutions of contaminant transport from a finite diminishing surface source into a semi-infinite soil with non-equilibrium time dependent sorption have been developed and presented in this paper. The solutions extend earlier closed form solutions by Booker et al., (1987) and Lapidus et al., (1952). Also presented are corresponding closed form Laplace transform solutions; these will yield the(semi-analytical solutions in real space and time after numerical inversion. A series of parametric studies has been undertaken to show the effects of parameters variations corresponding to changes in the physical processes.","PeriodicalId":368904,"journal":{"name":"Revue Européenne de Génie Civil","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue Européenne de Génie Civil","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17747120.2007.9692933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT Closed form solutions of contaminant transport from a finite diminishing surface source into a semi-infinite soil with non-equilibrium time dependent sorption have been developed and presented in this paper. The solutions extend earlier closed form solutions by Booker et al., (1987) and Lapidus et al., (1952). Also presented are corresponding closed form Laplace transform solutions; these will yield the(semi-analytical solutions in real space and time after numerical inversion. A series of parametric studies has been undertaken to show the effects of parameters variations corresponding to changes in the physical processes.
封闭形式的污染物运移到半无限土壤与非平衡吸收从一个有限的递减表面源
摘要:本文发展并提出了污染物从有限的逐渐减少的表面源进入具有非平衡时间依赖吸附的半无限土壤的封闭形式解。这些解扩展了Booker et al.(1987)和Lapidus et al.(1952)的早期闭形式解。并给出了相应的闭型拉普拉斯变换解;这将得到数值反演后在实际空间和时间上的半解析解。已经进行了一系列参数研究,以显示相应于物理过程变化的参数变化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信