{"title":"Differential control of high-voltage activated Ca2+ current components by a Ca2+-dependent inactivation mechanism in thalamic relay neurons","authors":"Sven Meuth, Thomas Budde, Hans-Christian Pape","doi":"10.1016/S1472-9288(01)00006-1","DOIUrl":null,"url":null,"abstract":"<div><p>Ca<sup>2+</sup>-dependent inactivation of Ca<sup>2+</sup> channels represents a feedback mechanism to limit the influx of Ca<sup>2+</sup> into cells. Since large Ca<sup>2+</sup> transients are present in thalamocortical relay neurons and Ca<sup>2+</sup>-dependent mechanisms play a pivotal role for thalamic physiology, the existence of this inactivation mechanism and the involvement of different Ca<sup>2+</sup><span><span> channel subtypes was investigated. The use of subtype-specific antibodies revealed the expression of α1A–α1E channel proteins on the cell body and proximal dendrites of acutely isolated cells from the rat dorsolateral </span>geniculate nucleus<span> (dLGN). In addition, subtype-specific channel blocking agents were used in whole cell patch clamp<span> experiments: nifedipine (1–5</span></span></span> <!-->μM; L-type) blocked 35±3%, ω-conotoxin GVIA (1<!--> <!-->μM; N-type) blocked 27±8%, and ω-conotoxin MVIIC (4<!--> <!-->μM; P/Q-type) blocked 33±5% of the total HVA Ca<sup>2+</sup> current. The blocker-resistant current constituted about 12±3% of the total Ca<sup>2+</sup> current. The degree of Ca<sup>2+</sup> current inactivation was assessed by using a two-pulse protocol. Under control conditions the post-pulse <em>I</em>/<em>V</em><span> was U-shaped with 35±4% of the current undergoing inactivation. Inclusion of BAPTA to the internal pipette solution reduced the degree of inactivation to 15±1%. When L- and P/Q-type current was blocked, the degree of inactivation was lowered to 20±2 and 27±3%, respectively. In the presence of ω-agatoxin TK (35±6%) and ω-conotoxin GVIA (32±1%) there was no change in inactivation. These data suggest that Ca</span><sup>2+</sup>-dependent inactivation is involved in the fine tuning of Ca<sup>2+</sup> entry into relay neurons mediated by L- and Q-type channels locally operated by Ca<sup>2+</sup> beneath the plasma membrane.</p></div>","PeriodicalId":74923,"journal":{"name":"Thalamus & related systems","volume":"1 1","pages":"Pages 31-38"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1472-9288(01)00006-1","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thalamus & related systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1472928801000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Ca2+-dependent inactivation of Ca2+ channels represents a feedback mechanism to limit the influx of Ca2+ into cells. Since large Ca2+ transients are present in thalamocortical relay neurons and Ca2+-dependent mechanisms play a pivotal role for thalamic physiology, the existence of this inactivation mechanism and the involvement of different Ca2+ channel subtypes was investigated. The use of subtype-specific antibodies revealed the expression of α1A–α1E channel proteins on the cell body and proximal dendrites of acutely isolated cells from the rat dorsolateral geniculate nucleus (dLGN). In addition, subtype-specific channel blocking agents were used in whole cell patch clamp experiments: nifedipine (1–5 μM; L-type) blocked 35±3%, ω-conotoxin GVIA (1 μM; N-type) blocked 27±8%, and ω-conotoxin MVIIC (4 μM; P/Q-type) blocked 33±5% of the total HVA Ca2+ current. The blocker-resistant current constituted about 12±3% of the total Ca2+ current. The degree of Ca2+ current inactivation was assessed by using a two-pulse protocol. Under control conditions the post-pulse I/V was U-shaped with 35±4% of the current undergoing inactivation. Inclusion of BAPTA to the internal pipette solution reduced the degree of inactivation to 15±1%. When L- and P/Q-type current was blocked, the degree of inactivation was lowered to 20±2 and 27±3%, respectively. In the presence of ω-agatoxin TK (35±6%) and ω-conotoxin GVIA (32±1%) there was no change in inactivation. These data suggest that Ca2+-dependent inactivation is involved in the fine tuning of Ca2+ entry into relay neurons mediated by L- and Q-type channels locally operated by Ca2+ beneath the plasma membrane.