{"title":"The Investigation of the Corrosive Effects of Sulphates and Salts on the Concrete and the\nStudy of Environmental Changes on it","authors":"R. K. Gupta","doi":"10.36937/cebacom.2020.002.001","DOIUrl":null,"url":null,"abstract":"Due to the environmental impact of sulphates and salts on concrete and the significant reduction in concrete strength, extensive research has been carried out to reinforce concrete against these types of attacks. The results show that the use of coal ash increases Concrete quality is counteracting the attack of sulfates. The sulfates include calcium sulfate, sodium sulfate, magnesium sulfate, and the like. Sulfate attack in tropical coastal areas with hot and humid weather causes very severe damage. One can refer to ash of cane sugar syrup (bagasse) as one of the most suitable alternatives for cement in concrete. Other materials that can be considered for preventing attack of sulfates include concrete containing carbon nanotubes and shells ash pozzolan Rice. Using 80% cement, carbon nanotubes and 15% zirconium rice ash in concrete structure can improve concrete performance against sulfate attack and corrosion resistance. According to the results of concrete containing nanotube Carbon and rice structure has the highest corrosion resistance.","PeriodicalId":343973,"journal":{"name":"Journal of Cement Based Composites","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cement Based Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36937/cebacom.2020.002.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Due to the environmental impact of sulphates and salts on concrete and the significant reduction in concrete strength, extensive research has been carried out to reinforce concrete against these types of attacks. The results show that the use of coal ash increases Concrete quality is counteracting the attack of sulfates. The sulfates include calcium sulfate, sodium sulfate, magnesium sulfate, and the like. Sulfate attack in tropical coastal areas with hot and humid weather causes very severe damage. One can refer to ash of cane sugar syrup (bagasse) as one of the most suitable alternatives for cement in concrete. Other materials that can be considered for preventing attack of sulfates include concrete containing carbon nanotubes and shells ash pozzolan Rice. Using 80% cement, carbon nanotubes and 15% zirconium rice ash in concrete structure can improve concrete performance against sulfate attack and corrosion resistance. According to the results of concrete containing nanotube Carbon and rice structure has the highest corrosion resistance.