{"title":"On uniform convergence of Fourier-Sobolev series","authors":"T. Shakh-Emirov","doi":"10.31029/demr.12.5","DOIUrl":null,"url":null,"abstract":"Let $\\{\\varphi_{k}\\}_{k=0}^\\infty$ be a system of functions defined on $ [a, b] $ and orthonormal in $ L ^ 2_ \\rho = L ^ 2_\\rho ( a, b) $ with respect to the usual inner product.\nFor a given positive integer $ r $, by $\\{\\varphi_{r,k}\\}_{k=0}^\\infty$ we denote the system of functions orthonormal with respect to the Sobolev-type inner product and generated by the system $\\{\\varphi_{k}\\}_{k=0}^\\infty$.\nIn this paper, we study the question of the uniform convergence of the Fourier series by the system of functions $\\{\\varphi_{r,k}\\}_{k=0}^\\infty$ to the functions $f\\in W^r_{L^p_\\rho}$ in the case when the original system $\\{\\varphi_{k}\\}_{k=0}^\\infty$ forms a basis in the space $L^p_\\rho=L^p_\\rho(a,b)$ ($1\\le p$, $p\\neq2$).","PeriodicalId":431345,"journal":{"name":"Daghestan Electronic Mathematical Reports","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Daghestan Electronic Mathematical Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31029/demr.12.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let $\{\varphi_{k}\}_{k=0}^\infty$ be a system of functions defined on $ [a, b] $ and orthonormal in $ L ^ 2_ \rho = L ^ 2_\rho ( a, b) $ with respect to the usual inner product.
For a given positive integer $ r $, by $\{\varphi_{r,k}\}_{k=0}^\infty$ we denote the system of functions orthonormal with respect to the Sobolev-type inner product and generated by the system $\{\varphi_{k}\}_{k=0}^\infty$.
In this paper, we study the question of the uniform convergence of the Fourier series by the system of functions $\{\varphi_{r,k}\}_{k=0}^\infty$ to the functions $f\in W^r_{L^p_\rho}$ in the case when the original system $\{\varphi_{k}\}_{k=0}^\infty$ forms a basis in the space $L^p_\rho=L^p_\rho(a,b)$ ($1\le p$, $p\neq2$).
设$\{\varphi_{k}\}_{k=0}^\infty$是一个定义在$ [a, b] $上的函数系统,在$ L ^ 2_ \rho = L ^ 2_\rho ( a, b) $上对通常的内积正交。对于给定的正整数$ r $,用$\{\varphi_{r,k}\}_{k=0}^\infty$表示由系统$\{\varphi_{k}\}_{k=0}^\infty$生成的与sobolev型内积正交的函数系统。本文研究了当原系统$\{\varphi_{k}\}_{k=0}^\infty$在空间$L^p_\rho=L^p_\rho(a,b)$ ($1\le p$)中构成一组基时,函数系统$\{\varphi_{r,k}\}_{k=0}^\infty$对函数$f\in W^r_{L^p_\rho}$的傅里叶级数的一致收敛问题。$p\neq2$)。