A Local Temporal Context-Based Approach for TV News Story Segmentation

Emilie Dumont, G. Quénot
{"title":"A Local Temporal Context-Based Approach for TV News Story Segmentation","authors":"Emilie Dumont, G. Quénot","doi":"10.1109/ICME.2012.3","DOIUrl":null,"url":null,"abstract":"Users are often interested in retrieving only a particular passage on a topic of interest to them. It is therefore necessary to split videos into shorter segments corresponding to appropriate retrieval units. We propose here a method based on a local temporal context for the segmentation of TV news videos into stories. First, we extract multiple descriptors which are complementary and give good insights about story boundaries. Once extracted, these descriptors are expanded with a local temporal context and combined by an early fusion process. The story boundaries are then predicted using machine learning techniques. We investigate the system by experiments conducted using TRECVID 2003 data and protocol of the story boundary detection task and we show that the extension of multimodal descriptors by a local temporal context approach improves results and our method outperforms the state of the art.","PeriodicalId":273567,"journal":{"name":"2012 IEEE International Conference on Multimedia and Expo","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2012.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Users are often interested in retrieving only a particular passage on a topic of interest to them. It is therefore necessary to split videos into shorter segments corresponding to appropriate retrieval units. We propose here a method based on a local temporal context for the segmentation of TV news videos into stories. First, we extract multiple descriptors which are complementary and give good insights about story boundaries. Once extracted, these descriptors are expanded with a local temporal context and combined by an early fusion process. The story boundaries are then predicted using machine learning techniques. We investigate the system by experiments conducted using TRECVID 2003 data and protocol of the story boundary detection task and we show that the extension of multimodal descriptors by a local temporal context approach improves results and our method outperforms the state of the art.
基于局部时间上下文的电视新闻故事分割方法
用户通常只对检索他们感兴趣的主题的特定段落感兴趣。因此,有必要根据适当的检索单位将录象片分成较短的片段。本文提出了一种基于局部时间背景的电视新闻视频故事分割方法。首先,我们提取多个互补的描述符,并提供关于故事边界的良好见解。一旦提取出来,这些描述符就会被扩展到局部时间背景中,并通过早期融合过程进行组合。然后使用机器学习技术预测故事边界。我们通过使用TRECVID 2003数据和故事边界检测任务协议进行的实验来研究该系统,我们表明,通过局部时间上下文方法扩展多模态描述符可以改善结果,并且我们的方法优于目前的技术水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信