Low-Complexity Adaptive Switched Prediction-Based Lossless Compression of Time-Lapse Hyperspectral Image Data

T. Shinde, A. Tiwari, Weiyao Lin
{"title":"Low-Complexity Adaptive Switched Prediction-Based Lossless Compression of Time-Lapse Hyperspectral Image Data","authors":"T. Shinde, A. Tiwari, Weiyao Lin","doi":"10.1109/GlobalSIP45357.2019.8969499","DOIUrl":null,"url":null,"abstract":"Time-lapse hyperspectral image (HSI) data has an enormous size and demands lossless compression for most of the high fidelity applications. In literature, spatial and spectral correlations in HSI are widely studied and used for compression. We propose a novel adaptive switched prediction-based scheme, which efficiently exploits temporal correlations in addition to spatial, and spectral correlations. The predictor switching uses a threshold, which is chosen based on the residual error distribution of already encoded band. Hence, our method does not need any overhead to be transmitted. The proposed scheme outperforms other state-of-the-art methods in bit-rate, and the method is computationally efficient too.","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Time-lapse hyperspectral image (HSI) data has an enormous size and demands lossless compression for most of the high fidelity applications. In literature, spatial and spectral correlations in HSI are widely studied and used for compression. We propose a novel adaptive switched prediction-based scheme, which efficiently exploits temporal correlations in addition to spatial, and spectral correlations. The predictor switching uses a threshold, which is chosen based on the residual error distribution of already encoded band. Hence, our method does not need any overhead to be transmitted. The proposed scheme outperforms other state-of-the-art methods in bit-rate, and the method is computationally efficient too.
基于低复杂度自适应切换预测的时移高光谱图像数据无损压缩
延时高光谱图像(HSI)数据具有巨大的数据量,在大多数高保真应用中需要对其进行无损压缩。在文献中,HSI的空间和光谱相关性被广泛研究并用于压缩。我们提出了一种新的基于自适应开关预测的方案,该方案有效地利用了时间相关性以及空间和光谱相关性。预测器切换使用阈值,该阈值是根据已编码频带的残差分布选择的。因此,我们的方法不需要任何传输开销。该方案在比特率上优于其他先进的方法,并且计算效率高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信