Behavior Analysis of Constrained Multiobjective Evolutionary Algorithms using Scalable Constrained Multi-Modal Distance Minimization Problems

Maaya Yano, Naoki Masuyama, Y. Nojima
{"title":"Behavior Analysis of Constrained Multiobjective Evolutionary Algorithms using Scalable Constrained Multi-Modal Distance Minimization Problems","authors":"Maaya Yano, Naoki Masuyama, Y. Nojima","doi":"10.23919/WAC55640.2022.9934365","DOIUrl":null,"url":null,"abstract":"This paper proposes scalable constrained multimodal distance minimization problems to evaluate algorithm behaviors against a multi-modal property and constraints that often appear in real-world optimization problems. Our previous study proposed two-dimensional constrained multi-modal distance minimization problems (CMDMPs), which include the above characteristics. This paper extends CMDMPs to scalable problems which can define any number of decision variables. They can be used to examine the effects of the number of decision variables on the search performance of constrained multiobjective evolutionary algorithms (MOEAs). In computational experiments, we evaluate two MOEAs, i.e., NSGA-II and DNEA, and three constraint handling methods, i.e., CDP, IEpsilon, and SP, using the proposed CMDMPs.","PeriodicalId":339737,"journal":{"name":"2022 World Automation Congress (WAC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 World Automation Congress (WAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WAC55640.2022.9934365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes scalable constrained multimodal distance minimization problems to evaluate algorithm behaviors against a multi-modal property and constraints that often appear in real-world optimization problems. Our previous study proposed two-dimensional constrained multi-modal distance minimization problems (CMDMPs), which include the above characteristics. This paper extends CMDMPs to scalable problems which can define any number of decision variables. They can be used to examine the effects of the number of decision variables on the search performance of constrained multiobjective evolutionary algorithms (MOEAs). In computational experiments, we evaluate two MOEAs, i.e., NSGA-II and DNEA, and three constraint handling methods, i.e., CDP, IEpsilon, and SP, using the proposed CMDMPs.
基于可伸缩约束多模态距离最小化问题的约束多目标进化算法行为分析
本文提出了可伸缩的约束多模态距离最小化问题,以评估算法在实际优化问题中经常出现的多模态特性和约束下的行为。我们之前的研究提出了包含上述特征的二维约束多模态距离最小化问题(CMDMPs)。本文将CMDMPs扩展到可以定义任意数量决策变量的可扩展问题。它们可以用来检验决策变量数量对约束多目标进化算法(moea)搜索性能的影响。在计算实验中,我们使用提出的CMDMPs评估了两种moea,即NSGA-II和DNEA,以及三种约束处理方法,即CDP, IEpsilon和SP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信