Unveiling the Physics of Partial Differential Equations with Heuristics

V. Faraoni
{"title":"Unveiling the Physics of Partial Differential Equations with Heuristics","authors":"V. Faraoni","doi":"10.1142/s2661339522500123","DOIUrl":null,"url":null,"abstract":"Heuristic arguments and order of magnitude estimates for partial differential equations highlight essential features of the physics they describe. We present order of magnitude estimates, and their limitations, for the three classic second order PDEs of mathematical physics (wave, heat, and Laplace equations), for first order transport equations, and for two nonlinear wave equations. It is beneficial to expose the beginning student to these considerations before jumping into more rigorous mathematics. Yet these simple arguments are missing from physics textbooks.","PeriodicalId":112108,"journal":{"name":"The Physics Educator","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Physics Educator","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2661339522500123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heuristic arguments and order of magnitude estimates for partial differential equations highlight essential features of the physics they describe. We present order of magnitude estimates, and their limitations, for the three classic second order PDEs of mathematical physics (wave, heat, and Laplace equations), for first order transport equations, and for two nonlinear wave equations. It is beneficial to expose the beginning student to these considerations before jumping into more rigorous mathematics. Yet these simple arguments are missing from physics textbooks.
用启发式揭示偏微分方程的物理性质
偏微分方程的启发式论证和数量级估计突出了它们所描述的物理的基本特征。我们提出数量级估计,以及它们的局限性,为三个经典的二阶偏微分方程的数学物理(波,热,和拉普拉斯方程),为一阶输运方程,并为两个非线性波动方程。在进入更严格的数学之前,让初学者了解这些考虑是有益的。然而,这些简单的论点在物理教科书中是缺失的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信