Improving Simulation Optimization Run Time When Solving for Periodic Review Inventory Policies in a Pharmacy

Lauren L. Czerniak, Mark S. Daskin, Mariel S. Lavieri, B. V. Sweet, J. Erley, Matthew A. Tupps
{"title":"Improving Simulation Optimization Run Time When Solving for Periodic Review Inventory Policies in a Pharmacy","authors":"Lauren L. Czerniak, Mark S. Daskin, Mariel S. Lavieri, B. V. Sweet, J. Erley, Matthew A. Tupps","doi":"10.1109/WSC52266.2021.9715525","DOIUrl":null,"url":null,"abstract":"Pharmaceutical drugs are critical to patient care, but demand and supply uncertainties in this inventory system make decision-making a challenging task. In this paper, we present a simulation-optimization model that determines near-optimal $(s, S)$ periodic review inventory policies that minimize the expected cost per day. The model accounts for perishability, positive lead time, stochastic demand, and supply disruptions. We implement a Binary Grid-Search algorithm which uses the structure of the objective function to quickly solve the simulation-optimization model. The numerical results illustrate how the Binary Grid-Search algorithm performs 21 times faster (when performing 10,000 replications) in terms of run time when compared to an Exhaustive Grid-Search, without sacrificing solution accuracy. This paper provides an efficient method to solve for the near-optimal $(s, S)$ periodic review inventory policies which is essential in the pharmacy inventory system that handles thousands of different drugs.","PeriodicalId":369368,"journal":{"name":"2021 Winter Simulation Conference (WSC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC52266.2021.9715525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Pharmaceutical drugs are critical to patient care, but demand and supply uncertainties in this inventory system make decision-making a challenging task. In this paper, we present a simulation-optimization model that determines near-optimal $(s, S)$ periodic review inventory policies that minimize the expected cost per day. The model accounts for perishability, positive lead time, stochastic demand, and supply disruptions. We implement a Binary Grid-Search algorithm which uses the structure of the objective function to quickly solve the simulation-optimization model. The numerical results illustrate how the Binary Grid-Search algorithm performs 21 times faster (when performing 10,000 replications) in terms of run time when compared to an Exhaustive Grid-Search, without sacrificing solution accuracy. This paper provides an efficient method to solve for the near-optimal $(s, S)$ periodic review inventory policies which is essential in the pharmacy inventory system that handles thousands of different drugs.
改进药房定期审核库存策略的仿真优化运行时间
药物对患者护理至关重要,但在这种库存系统中,需求和供应的不确定性使决策成为一项具有挑战性的任务。在本文中,我们提出了一个模拟优化模型,该模型确定了接近最优的$(s, s)$定期审查库存策略,使每天的预期成本最小化。该模型考虑了易腐性、正交货时间、随机需求和供应中断。我们实现了一种二元网格搜索算法,利用目标函数的结构快速求解仿真优化模型。数值结果表明,与穷举网格搜索相比,二进制网格搜索算法(在执行10,000次复制时)的运行时间要快21倍,而不会牺牲解决方案的准确性。本文提供了一种求解近最优$(s, s)$周期评审库存策略的有效方法,这是处理数千种不同药物的药房库存系统所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信